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Preface

About This Book
This book was written with two groups of readers in mind. Whether you are new to C
and want to learn it, or already know the older version of the language but want to
find out more about the new standard, we hope that you will find what follows both
instructive and at times entertaining too. 

This  is  not  a  tutorial  introduction  to  programming.  The  book  is  designed  for
programmers  who  already  have  some experience  of  using  a  modern  high-level
procedural programming language. As we explain later, C isn't really appropriate for
complete beginners-though many have managed to use it-so the book will assume
that its readers have already done battle with the notions of statements, variables,
conditional  execution,  arrays,  procedures  (or  subroutines)  and so  on.  Instead  of
wasting your time by ploughing through tedious descriptions of how to add two
numbers together and explaining that the symbol for multiplication is *, the book
concentrates on the things that are special to C. In particular, it's the way that C is
used which is emphasized.

Those who already know C will be interested in the new Standard and how it affects
existing C programs. The effect on existing programs might not at first seem to be
important to newcomers, but in fact the 'old' and new versions of the language are
an issue for the beginner too. For some years after the approval of the Standard,
programmers will have to live in a world where they can easily encounter a mixture
of both the new and the old language, depending on the age of the programs that
they are working with. For that reason, the book highlights where the old and new
features  differ  significantly.  Some  of  the  old  features  are  no  ornament  to  the
language and are well worth avoiding; the Standard goes so far as to consider them
obsolescent and recommends that they should not be used. For that reason they
are not described in detail,  but only far enough to allow a reader to understand
what they mean. Anybody who intends to  write programs using these old-style
features should be reading a different book.

This is the second edition of the book, which has been revised to refer to the final,
approved version of the Standard. The first edition of the book was based on a draft
of  the  Standard  which  did  contain  some  differences  from  the  draft  that  was
eventually approved. During the revision we have taken the opportunity to include
more  summary material  and an extra chapter  illustrating the use of  C and the
Standard Library to solve a number of small problems.

The Success of C
C is  a  remarkable  language.  Designed  originally  by  one  man,  Dennis  Ritchie,
working at AT&T Bell Laboratories in New Jersey, it has increased in use until now it
may well be one of the most widely-written computer languages in the world. The
success of  C is  due to a number of  factors,  none of  them key,  but all  of  them



important.  Perhaps  the  most  significant  of  all  is  that  C  was  developed  by  real
practioners of programming and was designed for practical day-to-day use, not for
show or for demonstration. Like any well-designed tool, it falls easily to the hand
and  feels  good  to  use.  Instead  of  providing  constraints,  checks  and  rigorous
boundaries, it concentrates on providing you with power and on not getting in your
way.

Because of this, it's better for professionals than beginners. In the early stages of
learning to program you need a protective  environment that  gives feedback on
mistakes and helps you to get results quickly-programs that run, even if they don't
do what you meant. C is not like that! A professional forester would use a chain-saw
to cut down trees quickly, aware of the dangers of touching the blade when the
machine  is  running;  C programmers  work  in  a  similar  way.  Although  modern  C
compilers do provide a limited amount of feedback when they notice something that
is out of the ordinary, you almost always have the option of forcing the compiler to
do what you said you wanted and to stop it from complaining. Provided that what
you said you wanted was what you really did want, then you'll get the result you
expected. Programming in C is like eating red meat and drinking strong rum except
your arteries and liver are more likely to survive it.

Not only is C popular and a powerful asset in the armoury of the serious day-to-day
programmer, there are other reasons for the success of this language. It has always
been  associated  with  the  UNIX  operating  system  and  has  benefited  from  the
increasing popularity of that system. Although it is not the obvious first choice for
writing large commercial data processing applications, C has the great advantage of
always being available on commercial UNIX implementations. UNIX is written in C,
so whenever UNIX is implemented on a new type of hardware, getting a C compiler
to work for that system is the first task. As a result it is almost impossible to find a
UNIX system without support for C, so the software vendors who want to target the
UNIX marketplace find that C is the best bet if they want to get wide coverage of
the systems available. Realistically, C is the first choice for portability of software in
the UNIX environment.

C has also gained substantially in use and availability from the explosive expansion
of the Personal Computer market. C could almost have been designed specifically
for the development of software for the PC-developers get not only the readability
and productivity of a high-level language, but also the power to get the most out of
the PC architecture  without having to resort  to the use of assembly code. C is
practically  unique  in  its  ability  to  span  two  levels  of  programming;  as  well  as
providing high-level control of flow, data structures and procedures-all of the stuff
expected in a modern high-level language-it also allows systems programmers to
address machine words, manipulate bits and get close to the underlying hardware if
they want to. That combination of features is very desirable in the competitive PC
software markeplace and an increasing number of software developers have made
C their primary language as a result.



Finally, the extensibility of C has contributed in no small way to its popularity. Many
other languages have failed to provide the file access  and general  input-output
features that are needed for industrial-strength applications. Traditionally, in these
languages I/O is built-in and is actually understood by the compiler. A master-stroke
in the design of C (and interestingly, one of the strengths of the UNIX system too)
has been to take the view that if you don't know how to provide a complete solution
to  a  generic  requirement,  instead  of  providing  half  a  solution  (which  invariably
pleases nobody), you should allow the users to build their own. Software designers
the world over have something to learn from this! It's the approach that has been
taken by C, and not only for I/O. Through the use of library functions you can extend
the language in many ways to provide features that the designers didn't think of.
There's proof of this in the so-called Standard I/O Library (stdio),  which matured
more slowly than the language, but had become a sort of standard all of its own
before the Standard Committee give it official blessing. It proved that it is possible
to develop a model of file I/O and associated features that is portable to many more
systems than UNIX, which is where it was first wrought. Despite the ability of C to
provide access to low-level hardware features, judicious style and the use of the
stdio package results in highly portable programs; many of which are to be found
running on top of operating systems that look very different from one another. The
nice thing about this library is that if you don't like what it does, but you have the
appropriate technical skills, you can usually extend it to do what you do want, or
bypass it altogether.

Standards
Remarkably, C achieved its success in the absence of a formal standard. Even more
remarkable  is  that  during  this  period  of  increasingly  widespread  use,  there  has
never been any serious divergence of C into the number of dialects that has been
the bane of, for example, BASIC. In fact, this is not so surprising. There has always
been  a  "language  reference  manual",  the  widely-known  book  written  by  Brian
Kernighan and Dennis Ritchie, usually referred to as simply "K&R".

The C Programming Language,
B.W. Kernighan and D. M. Ritchie,
Prentice-Hall
Englewood Cliffs,
New Jersey,
1978

Further acting as a rigorous check on the expansion into numerous dialects, on UNIX
systems there was only ever really one compiler for C; the so-called "Portable C
Compiler",  originally  written  by  Steve  Johnson.  This  acted  as  a  reference
implementation for C-if the K&R reference was a bit obscure then the behaviour of
the UNIX compiler was taken as the definition of the language.



Despite  this  almost  ideal  situation  (a  reference  manual  and  a  reference
implementation are extremely good ways of achieving stability at a very low cost),
the increasing number of alternative implementations of C to be found in the PC
world did begin to threaten the stability of the language.

The X3J11 committee of the American National Standards Institute started work in
the early 1980's to produce a formal standard for C. The committee took as its
reference the K&R definition and began its lengthy and painstaking work. The job
was  to  try  to  eliminate  ambiguities,  to  define  the  undefined,  to  fix  the  most
annoying deficiencies of the language and to preserve the spirit of C-all this as well
as  providing  as  much  compatibility  with  existing  practice  as  was  possible.
Fortunately,  nearly  all  of  the  developers  of  the  competing  versions  of  C  were
represented  on  the  committee,  which  in  itself  acted  as  a  strong  force  for
convergence right from the beginning.

Development of the Standard took a long time, as standards often do. Much of the
work is not just technical, although that is a very time-consuming part of the job,
but also procedural. It's easy to underrate the procedural aspects of standards work,
as if it somehow dilutes the purity of the technical work, but in fact it is equally
important.  A  standard  that  has  no  agreement  or  consensus  in  the  industry  is
unlikely  to  be  widely  adopted  and  could  be  useless  or  even  damaging.  The
painstaking work of obtaining consensus among committee members is critical to
the success of a practical  standard,  even if  at  times it  means compromising on
technical "perfection", whatever that might be. It is a democratic process, open to
all,  which  occasionally  results  in  aberrations  just  as  much  as  can  excessive
indulgence by technical purists, and unfortunately the delivery date of the Standard
was affected at the last moment by procedural, rather than technical issues. The
technical  work was completed by December 1988, but  it  took a further year to
resolve procedural objections. Finally, approval to release the document as a formal
American National Standard was given on December 7th, 1989.

Hosted and Free-Standing Environments
The dependency on the use of libraries to extend the language has an important
effect  on the practical  use of C.  Not  only are  the Standard I/O Library functions
important to applications programmers, but there are a number of other functions
that  are  widely  taken  almost  for  granted as  being  part  of  the  language.  String
handling, sorting and comparison, character manipulation and similar services are
invariably expected in all but the most specialized of applications areas.

Because of this unusually heavy dependency on libraries to do real work, it was
most  important  that  the  Standard  provided  comprehensive  definitions  for  the
supporting functions too. The situation with the library functions was much more
complicated than the relatively simple job of  providing a tight definition for the
language  itself,  because  the  library  can  be  extended  or  modified  by  a
knowledgeable user and was only partially defined in K&R. In practice, this led to
numerous similar but different implementations of supporting libraries in common



use. By far the hardest part of the work of the Committee was to reach a good
definition of the library support that should be provided. In terms of benefit to the
final user of C, it is this work that will prove to be by far and away the most valuable
part of the Standard.

However,  not  all  C  programs  are  used  for  the  same  type  of  applications.  The
Standard Library is useful for 'data processing' types of applications, where file I/O
and numeric and string oriented data are widely used. There is an equally important
application area for C-the 'embedded system' area-which includes such things as
process control, real-time and similar applications.

The Standard knows this and provides for it. A large part of the Standard is the
definition of the library functions that must be supplied for hosted environments. A
hosted  environment  is  one  that  provides  the  standard  libraries.  The  standard
permits both hosted and  freestanding environments. and goes to some length to
differentiate between them. Who would want to go without libraries? Well, anybody
writing 'stand alone' programs. Operating systems, embedded systems like machine
controllers and firmware for instrumentation are all examples of the case where a
hosted  environment  might  be  inappropriate.  Programs  written  for  a  hosted
environment have to be aware of the fact that the names of all the library functions
are reserved for use by the implementation. There is no such restriction on the
programmer working in a freestanding environment, although it isn't a good idea to
go using names that are used in the standard library, simply because it will mislead
readers of  the program.  Chapter     9 describes the names and uses of  the library
functions.

Typographical conventions
The book tries to keep a consistent style in its use of special or technical terms.
Words with a special meaning to C, such as reserved words or the names of library
functions, are printed in a different typeface. Examples are int and printf. Terms
used by the book that have a meaning not to C but in the Standard or the text of
the book, are  bold if they have not been introduced recently. They are  not bold
everywhere, because that rapidly annoys the reader. As you have noticed, italics are
also used for emphasis from time to time, and to introduce loosely defined terms.
Whether or not the name of a function, keyword or so on starts with a capital letter,
it is nonetheless capitalized when it appears at the start of a sentence; this is one
problem  where  either  solution  (capitalize  or  not)  is  unsatisfactory.  Occasionally
quote marks are used around 'special  terms' if  there is a danger of them being
understood  in  their  normal  English  meaning  because  of  surrounding  context.
Anything else is at the whim of the authors, or simply by accident.

Order of topics
The order of presentation of topics in this book loosely follows the order that is
taught in The Instruction Set's introductory course. It starts with an overview of the
essential parts of the language that will let you start to write useful programs quite



quickly. The introduction is followed by a detailed coverage of the material that was
ignored  before,  then  it  goes on  to  discuss  the standard  libraries  in  depth.  This
means that in principle, if you felt so inclined, you could read the book as far as you
like and stop, yet still have learnt a reasonably coherent subset of the language.
Previous  experience  of  C  will  render  Chapter     1 a  bit  slow,  but  it  is  still  worth
persevering with it, if only once.

Example programs
All but the smallest of the examples shown in the text have been tested using a
compiler that claims to conform to the Standard. As a result, most of them stand a
good chance of being correct, unless our interpretation of the Standard was wrong
and the compiler developer  made the same mistake.  None the less,  experience
warns that despite careful checking, some errors are bound to creep in. Please be
understanding with any errors that you may find.

Deference to Higher Authority
This book is an attempt to produce a readable and enlightening description of the
language defined by the Standard. It sets out to to make interpretations of what the
Standard actually means but to express them in 'simpler' English. We've done our
best to get it right, but you must never forget that the only place that the language
is fully defined is in the Standard itself. It is entirely possible that what we interpret
the  Standard  to  mean is  at  times not  what  the  Standard  Committee sought  to
specify, or that the way we explain it is looser and less precise than it is in the
Standard. If you are in any doubt: READ THE STANDARD! It's not meant to be read
for pleasure, but it is meant to be accurate and unambiguous; look nowhere else for
the authoritative last word.

Address for the Standard
Copies of the Standard can be obtained from:

X3 Secretariat,
CBEMA,
311 First Street, NW,
Suite 500,
Washington DC 20001-2178,
USA.
Phone (+1) (202) 737 8888 

Mike Banahan
Declan Brady

Mark Doran

January 1991 



Chapter 1: An Introduction to C

1.1. The form of a C program
If you're used to the block-structured form of, say, Pascal, then at the outer level the
layout of a C program may surprise you. If  your experience lies in the FORTRAN
camp you will find it closer to what you already know, but the inner level will look
quite different. C has borrowed shamelessly from both kinds of language, and from
a lot of other places too. The input from so many varied sources has spawned a
language a bit like a cross-bred terrier: inelegant in places, but a tenacious brute
that the family is fond of. Biologists refer to this phenomenon as 'hybrid vigour'.
They might also draw your attention to the 'chimera',  an artificial  crossbreed of
creatures such as a sheep and a goat. If it gives wool and milk, fine, but it might
equally well just bleat and stink!

At the coarsest level, an obvious feature is the multi-file structure of a program. The
language permits separate compilation, where the parts of a complete program can
be kept in one or more source files and compiled independently of each other. The
idea is  that  the compilation process will  produce files which can then be  linked
together using whatever link editor or loader that your system provides. The block
structure of the Algol-like languages makes this harder by insisting that the whole
program comes in one chunk, although there are usually ways of getting around it.

The reason for C's approach is historical and rather interesting. It is supposed to
speed things up: the idea is that compiling a program into relocatable object code is
slow and expensive in terms of resources; compiling is hard work. Using the loader
to bind together a number of object code modules should simply be a matter of
sorting out the absolute addresses of each item in the modules when combined into
a complete program. This should be relatively inexpensive. The expansion of the
idea to arrange for the loader to scan  libraries of object modules, and select the
ones that are needed, is an obvious one. The benefit is that if you change one small
part of a program then the expense of recompiling all of it may be avoided; only the
module that was affected has to be recompiled.

All,  the  same,  it's  true  that  the  more  work  put  on  to  the  loader,  the  slower  it
becomes, in fact sometimes it can be the slowest and most resource consuming
part  of  the  whole  procedure.  It  is  possible  that,  for  some systems,  it  would  be
quicker to recompile everything in one go than to have to use the loader: Ada has
sometimes been quoted as an example of this effect occurring. For C, the work that
has to be done by the loader is not large and the approach is a sensible one. Figure
 1 .1 shows the way that this works.



Figure 1.1 - Separate compilation

This technique is important in C, where it is common to find all but the smallest of
programs constructed  from a number of  separate  source  files.  Furthermore,  the
extensive  use  that  C makes  of  libraries  means  that  even  trivial  programs  pass
through the loader, although that might not be obvious at the first glance or to the
newcomer.

1.2. Functions
A C program is built up from a collection of items such as  functions and what we
could loosely call global variables. All of these things are given names at the point
where they are defined in the program; the way that the names are used to access
those items from a given place in the program is governed by rules. The rules are
described in the Standard using the term linkage. For the moment we only need to
concern ourselves with external linkage and no linkage. Items with external linkage
are those that are accessible throughout the program (library functions are a good
example); items with no linkage are also widely used but their accessibility is much
more restricted. Variables used inside functions are usually 'local' to the function;
they have no linkage. Although this book avoids the use of complicated terms like
those where it can, sometimes there isn't a plainer way of saying things. Linkage is
a term that you are going to become familiar with later. The only external linkage
that we will see for a while will be when we are using functions.

Functions  are  C's  equivalents  of  the  functions  and  subroutines  in  FORTRAN,
functions and procedures in Pascal and ALGOL. Neither BASIC in most of its simple
mutations, nor COBOL has much like C's functions.

The  idea  of  a  function  is,  of  course,  to  allow  you  to  encapsulate  one  idea  or
operation, give it a name, then to call that operation from various parts of the rest
of your program simply by using the name. The detail of what is going on is not
immediately visible at the point of use, nor should it be. In well designed, properly
structured programs, it should be possible to change the way that a function does
its job (as long as the job itself doesn't change) with no effect on the rest of the
program.

In a hosted environment there is one function whose name is special; it's the one
called main. This function is the first one entered when your program starts running.
In a freestanding environment the way that a program starts up is implementation
defined; a term which means that although the Standard doesn't specify what must



happen,  the  actual  behaviour  must  be  consistent  and  documented.  When  the
program leaves the main function, the whole program comes to an end. Here's a
simple program containing two functions:

#include <stdio.h>
/*
* Tell the compiler that we intend
* to use a function called show_message.
* It has no arguments and returns no value
* This is the "declaration".
*
*/
void show_message(void);
/*
* Another function, but this includes the body of
* the function. This is a "definition".
*/
main(){
     int count;
     count = 0;
     while(count < 10){
             show_message();
             count = count + 1;
     }
     exit(0);
}
/*
* The body of the simple function.
* This is now a "definition".
*/
void show_message(void){
     printf("hello\n");
}

Example 1.1

1.3. A description of Example  1 .1

1.3.1. What was in it
Even  such  a  small  example  has  introduced  a  lot  of C.  Among  other  things,  it
contained  two  functions,  a  #include 'statement',  and  some  comment.  Since
comment is the easiest bit to handle, let's look at that first.

1.3.2. Layout and comment
The layout  of  a  C  program is  not  very  important  to  the  compiler,  although for
readability it  is important to use this freedom to carry  extra information for the
human reader.  C  allows you to put  space,  tab  or  newline characters  practically
anywhere in the program without any special effect on the meaning of the program.
All of those three characters are the same as far as the compiler is concerned and
are called collectively  white space, because they just move the printing position



without causing any 'visible' printing on an output device. White space can occur
practically anywhere in a program except in the middle of  identifiers,  strings, or
character constants. An identifier is simply the name of a function or some other
object;  strings and character  constants  will  be discussed later-don't  worry about
them for the moment.

Apart from the special cases, the only place that white space must be used is to
separate things that would otherwise run together and become confused. In the
example above, the fragment void show_message needs space to separate the two
words, whereas show_message( could have space in front of the ( or not, it would
be purely a matter of taste.

Comment is introduced to a C program by the pair of characters /*, which must not
have a space between them. From then on, everything found up to and including
the pair of characters  */ is gobbled up and the whole lot is replaced by a single
space. In Old C, this was not the case. The rule used to be that comment could
occur anywhere that space could occur: the rule is now that comment is space. The
significance of the change is minor and eventually becomes apparent in Chapter     7
where  we  discuss  the  preprocessor.  A  consequence  of  the  rule  for  the  end  of
comment is that you can't put a piece of comment inside another piece, because
the first */ pair will finish all of it. This is a minor nuisance, but you learn to live
with it.

It is common practice to make a comment stand out by making each line of multi-
line comment always start with a *, as the example illustrates.

1.3.3. Preprocessor statements
The first statement in the example is a preprocessor directive. In days gone by, the
C  compiler  used  to  have  two  phases:  the  preprocessor,  followed  by  the  real
compiler.  The  preprocessor  was  a  macro  processor,  whose  job  was  to  perform
simple textual manipulation of the program before passing the modified text on to
be compiled. The preprocessor rapidly became seen as an essential aspect of the
compiler  and so has  now been defined as  part  of  the language and cannot  be
bypassed.

The preprocessor only knows about lines of text; unlike the rest of the language it
is  sensitive  to  the  end  of  a  line  and  though  it  is  possible  to  write  multi-line
preprocessor directives, they are uncommon and a source of some wonder when
they  are  found.  Any  line  whose  first  visible  character  is  a # is  a  preprocessor
directive.

In Example  1 .1 the preprocessor directive #include causes the line containing it to
be replaced completely by the contents of another file. In this case the filename is
found between the < and > brackets. This is a widely used technique to incorporate
the text of standard header files into your program without having to go through the
effort of typing it all yourself. The <stdio.h> file is an important one, containing the



necessary  information that  allows you to use the standard library for input  and
output. If you want to use the I/O library you must include <stdio.h>. Old C was
more relaxed on this point.

1.3.3.1. Define statements
Another  of  the  preprocessor's  talents  which  is  widely  exploited  is  the  #define
statement. It is used like this:

#define IDENTIFIER      replacement

which says that the name represented by IDENTIFIER will be replaced by the text of
replacement  whenever  IDENTIFIER occurs  in  the  program  text.  Invariably,  the
identifier is a name in upper-case; this is a stylistic convention that helps the reader
to  understand  what  is  going  on.  The  replacement  part  can  be  any  text  at  all-
remember  the  preprocessor  doesn't  know C,  it  just  works  on  text.  The  most
common use of the statement is to declare names for constant numbers:

#define PI             3.141592
#define SECS_PER_MIN   60
#define MINS_PER_HOUR  60
#define HOURS_PER_DAY  24

and to use them like this

circumf = 2*PI*radius;
if(timer >= SECS_PER_MIN){
mins = mins+1;
        timer = timer - SECS_PER_MIN;
}

the output from the preprocessor will be as if you had written this:

circumf = 2*3.141592*radius;
if(timer >= 60){
        mins = mins+1;
       timer = timer - 60;
}

Summary
Preprocessor statements work on a line-by-line basis, the rest of C does not.

#include statements are used to read the contents of a specified file, typically to
facilitate the use of library functions.

#define statements are typically used to give names for constants. By convention,
the names are in upper case (capitalized).

1.3.4. Function declaration and definition

1.3.4.1. Declaration



After  the  <stdio.h> file  is  included  comes  a  function  declaration;  it  tells  the
compiler that show_message is a function which takes no arguments and returns no
values.  This  demonstrates  one  of  the  changes  made  by  the  Standard:  it  is  an
example of a  function prototype, a subject which  Chapter     4 discusses in detail. It
isn't always necessary to declare functions in advance-C will use some (old) default
rules in such cases-but it is now strongly recommended that you do declare them in
advance. The distinction between a declaration and a definition is that the former
simply describes the type of the function and any arguments that it might take, the
latter  is  where  the  body  of  a  function  is  provided.  These  terms  become  more
important later.

By declaring show_message before it is used, the compiler is able to check that it is
used correctly. The declaration describes three important things about the function:
its  name,  its  type,  and  the  number  and  type  of  its  arguments.  The  void
show_message( part indicates that it is a function and that it returns a value of type
void, which is discussed in a moment. The second use of void is in the declaration
of the function's argument list, (void), which indicates that there are no arguments
to this function.

1.3.4.2. Definition
Right at the end of the program is the function definition itself; although it is only
three lines long, it usefully illustrates a complete function.

In C, functions perform the tasks that some other languages split into two parts.
Most languages use a function to return a value of some sort,  typical  examples
being perhaps trigonometric functions like sin, cos, or maybe a square root function;
C is the same in this respect. Other similar jobs are done by what look very much
like functions but which don't return a value: FORTRAN uses subroutines, Pascal and
Algol call them procedures. C simply uses functions for all of those jobs, with the
type of the function's return value specified when the function is defined. In the
example, the function  show_message doesn't return a value so we specify that its
type is void.

The use of  void in  that  way is  either  crashingly  obvious or  enormously  subtle,
depending on your viewpoint. We could easily get involved here in an entertaining
(though fruitless) philosophical side-track on whether void really is a value or not,
but we won't. Whichever side of the question you favour, it's clear that you can't do
anything with a  void and that's what it means here-"I don't want to do anything
with any value this function might or might not return".

The type of the function is  void,  its name is  show_message.  The parentheses ()
following the function name are needed to let the compiler know that at this point
we are talking about a function and not something else. If the function did take any
arguments,  then  their  names  would  be  put  between the  parentheses.  This  one
doesn't take any, which is made explicit by putting void between the parentheses.



For something whose essence is emptiness, abnegation and rejection,  void turns
out to be pretty useful.

The body of the function is a  compound statement, which is a sequence of other
statements surrounded by curly brackets {}. There is only one statement in there,
but  the brackets  are  still  needed.  In  general,  C  allows you  to  put  a  compound
statement anywhere that the language allows the use of a single simple statement;
the  job of  the  brackets  being to  turn  several  statements  in  a  row into  what  is
effectively a single statement.

It is reasonable to ask whether or not the brackets are strictly needed, if their only
job is to bind multiple statements into one, yet all that we have in the example is a
single statement. Oddly, the answer is yes-they are strictly needed. The only place
in C where you can't put a single statement but must have a compound statement
is when you are defining a function. The simplest function of all  is therefore the
empty function, which does nothing at all:

void do_nothing(void){}

The statement inside show_message is a call of the library function printf. printf
is used to format and print things, this example being one of the simplest of its
uses. printf takes one or more arguments, whose values are passed forward from
the point of the call into the function itself. In this case the argument is a string. The
contents of the string are interpreted by  printf and used to control the way the
values  of  the  other  arguments  are  printed.  It  bears  a  little  resemblance to  the
FORMAT statement in FORTRAN; but not enough to predict how to use it.

Summary
Declarations are used to introduce the name of a function, its return type and the
type (if any) of its arguments.

A function definition is a declaration with the body of the function given too.

A function returning no value should have its type declared as void. For example,
void func(/* list of arguments */); 

A function taking no arguments should be declared with void as its argument list.
For example, void func(void);

1.3.5. Strings
In C, strings are a sequence of characters surrounded by quote marks:

"like this"

Because a string is a single element, a bit like an identifier,  it is not allowed to
continue  across  a  line-although  space  or  tab  characters  are  permitted  inside  a
string.



"This is a valid string"
"This has a newline in it
and is NOT a valid string"

To get a very long string there are  two things that  you can do.  You could take
advantage of the fact that absolutely everywhere in a C program, the sequence
'backslash end-of-line' disappears totally.

"This would not be valid but doesn't have \
a newline in it as far as the compiler is concerned"

The other thing you could do is to to use the string joining feature, which says that
two adjacent strings are considered to be just one.

"All this " "comes out as "
"just one string"

Back to the example. The sequence '\n' in the string is an example of an  escape
sequence which in this case represents 'newline'. Printf simply prints the contents
of the string on the program's output file, so the output will read 'hello', followed by
a new line.

To support people working in environments that use character sets which are 'wider'
than U.S. ASCII, such as the shift-JIS representation used in Japan, the Standard now
allows  multibyte characters to be present in strings and comments. The Standard
defines the 96 characters that are the alphabet of C (see Chapter     2). If your system
supports  an  extended  character  set,  the  only  place  that  you  may  use  these
extended characters is in strings, character constants, comment and the names of
header  files.  Support  for  extended  character  sets  is  an  implementation  defined
feature, so you will have to look it up in your system's documentation.

1.3.6. The main function
In Example  1 .1 there are actually two functions, show_message and main. Although
main is a bit longer than show_message it is obviously built in the same shape: it has
a name, the parentheses ()  are there, followed by the opening bracket  { of  the
compound statement that must follow in a function definition. True, there's a lot
more stuff too, but right at the end of the example you'll find the matching closing
bracket } that goes with the first one to balance the numbers.

This is a much more realistic function now, because there are several statements
inside the function body, not just one. You might also have noticed that the function
is not declared to be void. There is a good reason for this: it returns a proper value.
Don't worry about its arguments yet; they are discussed in Chapter     10.

The most important thing about main is that it is the first function to be called. In a
hosted environment your C language system arranges, magically, for a call on the
main function (hence its name) when the program is first started. When the function
is over, so is the program. It's obviously an important function. Equally important is



the stuff  inside main's compound statement. As mentioned before, there can be
several statements inside a compound statement, so let's look at them in turn.

1.3.7. Declarations
The first statement is this:

int count;

which is not an instruction to do anything, but simply introduces a variable to the
program. It declares something whose name is count, and whose type is 'integer';
in C the keyword that declares integers is unaccountably shortened to int. C has an
idiosyncratic approach to these keywords with some having their names spelled in
full and some being shortened like int. At least int has a meaning that is more or
less intuitive; just wait until we get on to static.

As a result of that declaration the compiler now knows that there is something that
will  be  used  to  store  integral  quantities,  and  that  its  name is  count.  In  C,  all
variables  must  be  declared  before  they  are  used;  there  is  none  of  FORTRAN's
implicit declarations. In a compound statement, all the declarations must come first;
they must precede any 'ordinary' statements and are therefore somewhat special.

(Note for pedants:  unless you specifically  ask,  the declaration of  a  variable like
count is also a definition. The distinction will later be seen to matter.)

1.3.8. Assignment statement
Moving down the example we find a familiar thing, an assignment statement. This is
where  the  first  value  is  assigned to  the  variable  count,  in  this  case  the  value
assigned is a constant whose value is zero. Prior to the assignment, the value of
count was undefined and unsafe to use. You might be a little surprised to find that
the assignment symbol (strictly speaking an assignment operator) is a single = sign.
This is not fashionable in modern languages, but hardly a major blemish.

So far then, we have declared a variable and assigned the value of zero to it. What
next?

1.3.9. The while statement
Next is one of C's loop control statements, the while statement. Look carefully at its
form. The formal description of the while statement is this:

while(expression)
        statement

Is that what we have got? Yes it is. The bit that reads

count < 10

is  a  relational  expression,  which  is  an  example  of  a  valid  expression,  and  the
expression  is  followed  by  a  compound  statement,  which  is  a  form  of  valid
statement. As a result, it fits the rules for a properly constructed while statement.



What it does must be obvious to anyone who has written programs before. For as
long as the relationship count < 10 holds true, the body of the loop is executed and
the comparison repeated. If the program is ever to end, then the body of the loop
must do something that will eventually cause the comparison to be false: of course
it does.

There are just two statements in the body of the loop. The first one is a function call,
where the function  show_message is  invoked.  A function call  is  indicated by the
name of the function followed by the parentheses () which contain its argument
list-if it takes no arguments, then you provide none. If there were any arguments,
they would be put between the parentheses like this:

/* call a function with several arguments */
function_name(first_arg, second_arg, third_arg);

and so on. The call of printf is another example. More is explained in Chapter     4.

The last statement in the loop is another assignment statement. It adds one to the
variable count, so that the requirement for program to stop will eventually be met.

1.3.10. The return statement
The last statement that is left to discuss is the return statement. As it is written, it
looks like another function call, but in fact the rule is that the statement is written

return expression;

where  the  expression is  optional.  The  example  uses  a  common  stylistic
convention  and  puts  the  expression into  parentheses,  which  has  no  effect
whatsoever.

The return causes a value to be returned from the current function to its caller. If the
expression is missing, then an unknown value is passed back to the caller-this is
almost certainly a mistake unless the function returns  void.  Main wasn't declared
with any type at all, unlike show_message, so what type of value does it return? The
answer is  int.  There are a number of places where the language allows you to
declare things by default: the default type of functions is  int, so it is common to
see them used in this way. An equivalent declaration for main would have been

int main(){

and exactly the same results would have occurred.

You can't use the same feature to get a default type for variables because their
types must be provided explicitly.

What does the value returned from main mean, and where does it go? In Old C, the
value was passed back to the operating system or whatever else was used to start
the program running. In a UNIX-like environment, the value of 0 meant 'success' in
some way, any other value (often -1) meant 'failure'. The Standard has enshrined
this, stating that  0 stands for correct termination of the program. This  does not



mean that 0 is to be passed back to the host environment, but whatever is the
appropriate 'success' value for that system. Because there is sometimes confusion
around  this,  you  may  prefer  to  use  the  defined  values  EXIT_SUCCESS and
EXIT_FAILURE instead, which are defined in the header file <stdlib.h>. Returning
from the  main function is the same as calling the library function  exit with the
return  value  as  an  argument.  The  difference  is  that  exit  may  be  called  from
anywhere in the program, and terminates it at that point, after doing some tidying
up  activities.  If  you  intend  to  use  exit,  you  must include  the  header  file
<stdlib.h>. From now on, we shall use exit rather than returning from main.

Summary
The main function returns an int value.

Returning from main is the same as calling the exit function, but exit can be called
from anywhere in a program.

Returning  0 or  EXIT_SUCCESS is  the  way  of  indicating  success,  anything  else
indicates failure.

1.3.11. Progress so far
This  example  program,  although  short,  has  allowed  us  to  introduce  several
important language features, amongst them:

 Program structure

 Comment

 File inclusion

 Function definition

 Compound statements

 Function calling

 Variable declaration

 Arithmetic

 Looping

although of course none of this has been covered rigorously.

1.4. Some more programs
While we're still  in the informal phase, let's look at two more examples. You will
have to work out for yourself what some of the code does, but as new or interesting
features appear, they will be explained.

1.4.1. A program to find prime numbers



/*
*
* Dumb program that generates prime numbers.
*/
#include <stdio.h>
#include <stdlib.h>
main(){
    int this_number, divisor, not_prime;
    this_number = 3;
    while(this_number < 10000){
            divisor = this_number / 2;
            not_prime = 0;
            while(divisor > 1){
                    if(this_number % divisor == 0){
                            not_prime = 1;
                            divisor = 0;
                    }
                    else
                            divisor = divisor-1;
            }
            if(not_prime == 0)
                    printf("%d is a prime number\n", this_number);
            this_number = this_number + 1;
    }
    exit(EXIT_SUCCESS);
}

Example 1.2

What was interesting in there? A few new points, perhaps. The program works in a
really stupid way: to see if a number is prime, it divides that number by all  the
numbers between half its value and two-if any divide without remainder, then the
number  isn't  prime.  The  two  operators  that  you  haven't  seen  before  are  the
remainder operator  %, and the equality operator, which is a double equal sign  ==.
That last one is without doubt the cause of more bugs in C programs than any other
single factor.

The problem with the equality test is that wherever it can appear it is also legal to
put the single = sign. The first, ==, compares two things to see if they are equal, and
is generally what you need in fragments like these:

if(a == b)
while (c == d)

The assignment operator  = is, perhaps surprisingly, also legal in places like those,
but of course it assigns the value of the right-hand expression to whatever is on the
left.  The  problem  is  particularly  bad  if  you  are  used  to  the  languages  where
comparison for equality is done with what C uses for assignment. There's nothing
that you can do to help, so start getting used to it now. (Modern compilers do tend
to produce warnings when they think they have detected 'questionable'  uses of



assignment  operators,  but  that  is  a  mixed  blessing  when  your  choice  was
deliberate.)

There is also the introduction for the first time of the if statement. Like the while
statement, it tests an expression to see if the expression is true. You might have
noticed that  also  like  the  while statement,  the expression  that  controls  the  if
statement is in parentheses. That is always the case: all of the conditional control of
flow  statements  require  a  parenthesized  expression  after  the  keyword  that
introduces them. The formal description of the if statement goes like this:

if(expression)
        statement
if(expression)
        statement
else
        statement

showing that it comes in two forms. Of course, the effect is that if the expression
part  is  evaluated  to  be  true,  then  the  following  statement  is  executed.  If  the
evaluation is false, then the following statement is not executed. When there is an
else part, the statement associated with it is executed only if the evaluation gives a
false result.

If statements  have  a  famous  problem.  In  the  following  piece  of  code,  is  the
statement-2 executed or not?

if(1 > 0)
        if(1 < 0)
                statement-1
else
        statement-2

The answer is that it  is.  Ignore the indentation (which is misleading).  The  else
could belong to either the first or second if, according to the description of the if
statement  that  has  just  been  given,  so  an  extra  rule  is  needed  to  make  it
unambiguous. The rule is simply that an else is associated with the nearest else-
less  if above it. To make the example work the way that the indentation implied,
we have to invoke a compound statement:

if(1 > 0){
        if(1 < 0)
                statement-1
}
else
        statement-2

Here, at least, C adheres to the practice used by most other languages. In fact a lot
of programmers who are used to languages where the problem exists have never
even realized that it is there-they just thought that the disambiguating rule was
'obvious'. Let's hope that everyone feels that way.



1.4.2. The division operators
The division operators are the division operator  /, and the remainder operator  %.
Division does what  you would expect,  except that  when it  is  applied to integer
operands it gives a result that is truncated towards zero. For example, 5/2 gives 2,
5/3 gives 1. The remainder operator is the way to get the truncated remainder. 5%2
gives 1, 5%3 gives 2. The signs of the remainder and quotient depend on the divisor
and dividend in a way that is defined in the Standard and shown in Chapter     2.

1.4.3. An example performing input
It's useful to be able to perform input as well as to write programs that print out
more or less interesting lists and tables. The simplest of the library routines (and the
only one that we'll look at just now) is called  getchar. It reads single characters
from the program's  input and returns an integer value.  The value returned is  a
coded  representation  for  that  character  and  can  be  used  to  print  the  same
character  on  the  program  output.  It  can  also  be  compared  against  character
constants  or  other  characters  that  have been read,  although the only  test  that
makes sense is to see if both characters are the same. Comparing for greater or less
than each other is not portable in general; there is no guarantee that  'a' is less
than  'b',  although on most common systems that would be the case.  The only
guarantee that the Standard makes is that the codes for  '0' through to  '9' will
always be consecutive. Here is one example.

#include <stdio>
#include <stdlib.h>
main(){
        int ch;
        ch = getchar();
        while(ch != 'a'){
                if(ch != '\n')
                        printf("ch was %c, value %d\n", ch, ch);
                ch = getchar();
        }
        exit(EXIT_SUCCESS);
}

Example 1.3

There are two interesting points in there. The first is to notice that at the end of
each line of input read, the character represented by

'\n'

(a character constant) will  be seen. This just like the way that the same symbol
results in a new line when printf prints it. The model of I/O used by C is not based
on a line by line view of the world, but character by character instead; if you choose
to think in a line-oriented way, then '\n' allows you to mark the end of each 'line'.
Second is the way that %c is used to output a character by printf, when it appears



on the  output  as  a  character.  Printing  it  with  %d prints  the  same variable,  but
displays the integer value used by your program to represent the character.

If you try that program out, you may find that some systems do not pass characters
one by one to a program, but make you type a whole line of input first. Then the
whole line is made available as input, one character at a time. Beginners have been
known to be confused: the program is started, they type some input, and nothing
comes back. This behaviour is nothing to do with C; it depends on the computer and
operating system in use.

1.4.4. Simple arrays
The use of arrays in C is often a problem for the beginner. The declaration of arrays
isn't  too  difficult,  especially  the one-dimensional  ones,  but  a constant  source of
confusion is the fact that their indices always count from 0. To declare an array of 5
ints, the declaration would look like this:

int something[5];

In array declarations C uses square brackets, as you can see. There is no support for
arrays with indices whose ranges do not start at 0 and go up; in the example, the
valid array elements are something[0] to something[4]. Notice very carefully that
something[5] is not a valid array element.

This  program  reads  some  characters  from  its  input,  sorts  them  into  the  order
suggested by their representation, then writes them back out. Work out what it does
for yourself; the algorithm won't be given much attention in the explanation which
follows.



#include <stdio>
#include <stdlib.h>
#define ARSIZE  10
main(){
        int ch_arr[ARSIZE],count1;
        int count2, stop, lastchar;
        lastchar = 0;
        stop = 0;
        /*
         * Read characters into array.
         * Stop if end of line, or array full.
         */
        while(stop != 1){
                ch_arr[lastchar] = getchar();
                if(ch_arr[lastchar] == '\n')
                        stop = 1;
                else
                        lastchar = lastchar + 1;
                if(lastchar == ARSIZE)
                        stop = 1;
        }
        lastchar = lastchar-1;
        /*
         * Now the traditional bubble sort.
         */
        count1 = 0;
        while(count1 < lastchar){
                count2 = count1 + 1;
                while(count2 <= lastchar){
                        if(ch_arr[count1] > ch_arr[count2]){
                                /* swap */
                                int temp;
                                temp = ch_arr[count1];
                                ch_arr[count1] = ch_arr[count2];
                                ch_arr[count2] = temp;
                        }
                        count2 = count2 + 1;
                }
                count1 = count1 + 1;
        }
        count1 = 0;
        while(count1 <= lastchar){
                printf("%c\n", ch_arr[count1]);
                count1 = count1 + 1;
        }
        exit(EXIT_SUCCESS);
}

Example 1.4

You might note that the defined constant ARSIZE is used everywhere instead of the
actual array size. Because of that, to change the maximum number of characters



that can be sorted by this program simply involves a change to one line and then
re-compiling.  Not  so  obvious  but  critical  to  the  safety  of  the  program  is  the
detection of the array becoming full.  Look carefully; you'll  find that the program
stops when element  ARSIZE-1 has been filled.  That is because in an  N element
array, only elements 0 through to N-1 are available (giving N in total).

Unlike some other languages it is unlikely that you will be told if you 'run off' the
end of an array in C. It results in what is known as undefined behaviour on the part
of your program, this generally being to produce obscure errors in the future. Most
skilled programmers avoid this happening by rigorous testing to make sure either
that it can't happen given the particular algorithm in use, or by putting in an explicit
test before accessing a particular member of an array. This is a common source of
run-time errors in C; you have been warned.

Summary
Arrays always number from 0; you have no choice.

A n-element array has members which number from 0 to n-1 only. Element n does
not exist and to access it is a big mistake.

1.5. Terminology
In C programs there are two distinct types of things: things used to hold values and
things that are functions. Instead of having to refer to them jointly with a clumsy
phrase that maintains the distinction, we think that it's useful  to call  them both
loosely 'objects'. We do quite a lot of that later, because it's often the case that they
follow more or less the same rules. Beware though, that this isn't quite what the
Standard uses the term to mean. In the Standard, an 'object' is explicitly a region of
allocated storage that is used to represent a value and a function is  something
different; this leads to the Standard often having to say '... functions and objects ...'.
Because we don't think that it leads to too much confusion and does improve the
readability  of  the  text  in  most  cases,  we  will  continue  to  use  our  looser
interpretation of  object  to include functions and we will  explicitly use the terms
'data objects' and 'functions' when the distinction is appropriate.

Be prepared to find this slight difference in meaning if you do read the Standard.

1.6. Summary
This chapter has introduced many of the basics of the language although informally.
Functions, in particular, form the basic building block for C. Chapter     4 provides a full
description  of  these  fundamental  objects,  but  you  should  by  now  understand
enough about them to follow their informal use in the intervening material.

Although the idea of library functions has been introduced, it has not been possible
to illustrate the extent of their importance to the C application programmer. The
Standard Library, described in Chapter     9, is extremely important, both in the way



that it helps to improve the portability of programs intended for general use and
also in the aid to productivity that these useful functions can provide.

The use of variables, expressions and arithmetic are soon to be described in great
detail. As this chapter has shown, at a simple level, C differs little from most other
modern programming languages.

Only the use of structured data types still remains to be introduced, although arrays
have had a very brief airing.

1.7. Exercises
Exercise 1.1. Type in and test Example  1 .1 on your system.

Exercise     1.2. Using  Example  1 .2 as a pattern, write a program that prints prime
pairs - a pair of prime numbers that differ by 2, for example 11 and 13, 29 and 31.
(If you can detect a pattern between such pairs, congratulations! You are either a
genius or just wrong.)

Exercise     1.3. Write a function that returns an integer: the decimal value of a string
of  digits  that  it  reads  using  getchar.  For  example,  if  it  reads 1  followed  by 4
followed by 6, it will return the number 146. You may make the assumption that the
digits 0-9 are consecutive in the computer's representation (the Standard says so)
and that the function will only have to deal with valid digits and newline, so error
checking is not needed.

Exercise     1.4. Use the function that you just wrote to read a sequence of numbers.
Put them into an array declared in main, by repeatedly calling the function. Sort
them into ascending numerical order, then print the sorted list.

Exercise     1.5. Again using the function from Example  1 .3, write a program that will
read  numbers  from  its  input,  then  print  them  out  in  binary,  decimal  and
hexadecimal  form.  You should  not  use any features of  printf apart  from those
mentioned  in  this  chapter  (especially  the  hexadecimal  output  format!).  You  are
expected to work out what digits to print by calculating each one in turn and making
sure that they are printed in the right order. This is not particularly difficult, but it is
not trivial either.



Chapter 2: Variables and Arithmetic

2.1. Some fundamentals
Here is where we start to look in detail at the bits that the last chapter chose to
sweep under the carpet while it did its 'Instant C' introduction. The problem is, of
course, the usual one of trying to introduce enough of the language to let you get a
feel for what it's all about, without drowning beginners in a froth of detail that isn't
essential at the time.

Because this is  a lengthy chapter,  and because it  deliberately chooses to cover
some subtle problems that are often missed out in introductory texts, you should
make sure that you are in the right mood and proper frame of mind to read it.

The weary brain may find that  the breaks for  exercises  are  useful.  We strongly
recommend that you do actually attempt the exercises on the way through. They
help to balance the weight of information, which otherwise turns into an indigestible
lump.

It's time to introduce some of the fundamentals.

2.2. The alphabet of C
This is an interesting area; alphabets are important. All the same, this is the one
part of this chapter that you can read superficially first time round without missing
too much. Read it to make sure that you've seen the contents once, and make a
mental note to come back to it later on.

2.2.1. Basic Alphabet
Few computer languages bother to define their alphabet rigorously. There's usually
an assumption that the English alphabet augmented by a sprinkling of more or less
arbitrary punctuation symbols will be available in every environment that is trying
to support the language. The assumption is not always borne out by experience.
Older languages suffer less from this sort of problem, but try sending C programs by
Telex or restrictive e-mail links and you'll understand the difficulty.

The Standard talks about two different character sets: the one that programs are
written in and the one that programs execute with. This is basically to allow for
different systems for compiling and execution, which might use different ways of
encoding their characters. It doesn't actually matter a lot except when you are using
character constants in the preprocessor, where they may not have the same value
as they do at execution time. This behaviour is implementation-defined, so it must
be documented. Don't worry about it yet.

The Standard requires that an alphabet of 96 symbols is available for C as follows:

a b c d e f g h i j k l m n o p q r s t u v w x y z



A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

! " # % & ' ( ) * + , - . /

: ; < = > ? [ \ ] ^ _ { | } ~

space, horizontal and vertical tab

form feed, newline

Table 2.1 - The Alphabet of C

It turns out that most of the commonly used computer alphabets contain all the
symbols that are needed for C with a few notorious exceptions. The C alphabetic
characters shown below are missing from the International Standards Organization
ISO 646 standard 7-bit character set, which is as a subset of all the widely used
computer alphabets.

# [ \ ] ^ { | } ~

To  cater  for  systems that  can't  provide  the  full 96  characters  needed by C,  the
Standard  specifies  a  method  of  using  the  ISO 646  characters  to  represent  the
missing few; the technique is the use of trigraphs.

2.2.2. Trigraphs
Trigraphs are a sequence of three ISO 646 characters that get treated as if  they
were one character in the C alphabet; all of the trigraphs start with two question
marks ?? which helps to indicate that 'something funny' is going on.  Table  2 .2
below shows the trigraphs defined in the Standard.

C
character

Trigrap
h

# ??=

[ ??(

] ??)

{ ??<

} ??>

\ ??/

| ??!

~ ??-

^ ??'



Table 2.2 - Trigraphs

As an example, let's assume that your terminal doesn't have the # symbol. To write
the preprocessor line

#define MAX     32767

isn't possible; you must use trigraph notation instead:

??=define MAX   32767

Of course trigraphs will work even if you do have a # symbol; they are there to help
in difficult circumstances more than to be used for routine programming.

The  ? 'binds to the right', so in any sequence of repeated ?s, only the two at the
right  could  possibly  be  part  of  a  trigraph,  depending  on  what  comes  next-this
disposes of any ambiguity.

It would be a mistake to assume that programs written to be highly portable would
use trigraphs 'in case they had to be moved to systems that only support ISO 646'.
If your system can handle all 96 characters in the C alphabet, then that is what you
should be using. Trigraphs will  only be seen in restricted environments, and it is
extremely  simple  to  write  a  character-by-character  translator  between  the  two
representations. However, all compilers that conform to the Standard will recognize
trigraphs when they are seen.

Trigraph substitution is the very first operation that a compiler performs on its input
text.

2.2.3. Multibyte Characters
Support for multibyte characters is new in the Standard. Why?

A very large proportion of day-to-day computing involves data that represents text
of one form or another. Until recently, the rather chauvinist computing idustry has
assumed that it is adequate to provide support for about a hundred or so printable
characters (hence the 96 character alphabet of C), based on the requirements of
the  English  language-not  suprising,  since  the  bulk  of  the  development  of
commercial computing has been in the US market. This alphabet (technically called
the  repertoire) fits conveniently into 7 or 8 bits of storage, which is why the US-
ASCII character set standard and the architecture of mini and microcomputers both
give very heavy emphasis to the use of 8-bit bytes as the basic unit of storage.

C also has a byte-oriented approach to data storage. The smallest individual item of
storage that can be directly used in C is the byte, which is defined to be at least 8
bits  in  size.  Older  systems  or  architectures  that  are  not  designed  explicitly  to
support this may incur a performance penalty when running C as a result, although
there are not many that find this a big problem.

Perhaps  there  was  a  time  when  the  English  alphabet  was  acceptable  for  data
processing  applications  worldwide-when  computers  were  used  in  environments



where the users could be expected to adapt-but those days are gone. Nowadays it
is absolutely essential to provide for the storage and processing of textual material
in the native alphabet of whoever wants to use the system. Most of the US and
Western  European  language  requirements  can  be  squeezed  together  into  a
character set that still fits in 8 bits per character, but Asian and other languages
simply cannot.

There  are  two general  ways  of  extending character  sets.  One is  to  use a fixed
number of bytes (often two) for every character. This is what the wide character
support in C is designed to do. The other method is to use a shift-in shift-out coding
scheme;  this  is  popular  over  8-bit  communication  links.  Imagine  a  stream  of
characters that looks like:

a b c <SI> a b g <SO> x y

where  <SI> and  <SO> mean  'switch  to  Greek'  and  'switch  back  to  English'
respectively.  A  display  device  that  agreed  to  use  that  method  might  well  then
display a, b, c, alpha, beta, gamma, x and y. This is roughly the scheme used by the
shift-JIS Japanese standard, except that once the shift-in has been seen,  pairs of
characters  together  are  used  as  the  code  for  a  single  Japanese  character.
Alternative schemes exist which use more than one shift-in character, but they are
less common.

The Standard now allows explicitly for the use of extended character sets. Only the
96 characters defined earlier are used for the C part of a program, but in comments,
strings, character constants and header names (these are really data, not part of
the  program  as  such)  extended  characters  are  permitted  if  your  environment
supports them. The Standard lays down a number of pretty obvious rules about how
you are allowed to use them which we will not repeat here. The most significant one
is that a byte whose value is zero is interpreted as a null character irrespective of
any shift state. That is important, because C uses a null character to indicate the
end of strings and many library functions rely on it. An additional requirement is
that multibyte sequences must start and end in the initial shift state.

The char type is specified by the Standard as suitable to hold the value of all of the
characters in the 'execution character set', which will be defined in your system's
documentation. This means that (in the example above) it could hold the value of 'a'
or 'b' or even the "switch to Greek" character itself. Because of the shift-in shift-out
mechanism, there would be no difference between the value stored in a char that
was intended to represent 'a' or the Greek 'alpha' character. To do that would mean
using a different representation - probably needing more than 8 bits, which on many
systems would be too  big  for  a  char.  That  is  why the Standard introduces  the
wchar_ttype.  To  use  this,  you  must  include  the  <stddef.h>  header,  because
wchar_t is simply defined as an alternative name for one of C's other types. We
discuss it further in Section     2.8.



Summary
 C requires at least 96 characters in the source program character set.

 Not all character sets in common use can stretch to 96 characters, trigraphs
allow the basic ISO 646 character set to be used (at a pinch).

 Multibyte character support has been added by the Standard, with support for

 Shift-encoded  multibyte  characters,  which  can  be  squeezed  into
'ordinary' character arrays, so still have char type.

Wide characters,  each of which may use more storage than a regular character.
These usually have a different type from char.

2.3. The Textual Structure of Programs

2.3.1. Program Layout
The  examples  so  far  have  used  the  sort  of  indentation  and  line  layout  that  is
common in languages belonging to the same family as C. They are 'free format'
languages and you are expected to use that freedom to lay the program out in a
way  that  enhances  its  readability  and  highlights  its  logical  structure.  Space
(including horizontal tab) characters can be used for indentation anywhere except in
identifiers or keywords without any effect on the meaning of the program. New lines
work in the same way as space and tab except on preprocessor command lines,
which have a line-by-line structure.

If a line is getting too long for comfort there are two things you can do. Generally it
will be possible to replace one of the spaces by a newline and use simply two lines
instead, as this example shows.

/* a long line */
a = fred + bill * ((this / that) * sqrt(3.14159));
/* the same line */
a = fred + bill *
        ((this / that) *
        sqrt(3.14159));

If you're unlucky it may not be possible to break the lines like that. The preprocessor
suffers most from the problem, because of its reliance on single-line 'statements'. To
help, it's useful to know that the sequence 'backslash newline' becomes invisible to
the C translation system. As a result, the sequence is valid even in unusual places
such as the middle of identifiers, keywords, strings and so on. Only trigraphs are
processed before this step.

/*
 * Example of the use of line joining
 */
#define IMPORTANT_BUT_LONG_PREPROCESSOR_TEXT \
printf("this is effectively all ");\
printf("on a single line ");\
printf("because of line-joining\n");



The only time that you might want to use this way of breaking lines (outside of
preprocessor control lines) is to prevent long strings from disappearing off the right-
hand side of  a  program listing.  New lines  are  not permitted inside strings and
character constants, so you might think that the following is a good idea.

/* not a good way of folding a string */
printf("This is a very very very\
long string\n");

That will certainly work, but for strings it is preferable to make use of the string-
joining feature introduced by the Standard:

/* This string joining will not work in Old C */
printf("This is a very very very"
       "long string\n");

The second example allows you to indent the continuation portion of  the string
without changing its meaning; adding indentation in the first example would have
put the indentation into the string.

Incidentally, both examples contain what is probably a mistake. There is no space in
front  of  the  'long'  in  the  continuation  string,  which  will  contain  the  sequence
'verylong' as a result. Did you notice?

2.3.2. Comment
Comment,  as  has been said already,  is  introduced by the character  pair /* and
terminated by */. It is translated into a single space wherever it occurs and so it
follows exactly the same rules that spaces do. It's important to realize that it doesn't
simply disappear, which it used to do in Old C, and that it is not possible to put
comment into strings or character constants. Comment in such a place becomes
part of the string or constant:

/*"This is comment"*/
"/*The quotes mean that this is a string*/"

Old C was a bit hazy about what the deletion of comment implied. You could argue
that

int/**/egral();

should have the comment deleted and so be taken by the compiler to be a call of a
function named integral. The Standard C rule is that comment is to be read as if
were a space, so the example must be equivalent to

int egral();

which declares a function egral that returns type int.

2.3.3. Translation phases
The various character translation, line joining, comment recognition and other early
phases of translation must be specified to occur in a certain order. The Standard



says that the translation is to proceed as if the phases occurred in this order (there
are more phases, but these are the important ones):

1. Trigraph translation.
2. Line joining.
3. Translate comment to space (but not in strings or character constants). At this

stage, multiple white spaces may optionally be condensed into one.
4. Translate the program.

Each stage is completed before the next is started.

2.4. Keywords and identifiers
After covering the underlying alphabet, we can look at more interesting elements
of C. The most obvious of the language elements are keywords and identifiers; their
forms are identical (although their meanings are different).

2.4.1. Keywords
C keeps a small set of keywords for its own use. These keywords cannot be used as
identifiers in the program - a common restriction with modern languages. Where
users of Old C may be surprised is in the introduction of some new keywords; if
those names were used as identifiers in previous programs, then the programs will
have to be changed. It will be easy to spot, because it will provoke your compiler
into telling you about invalid names for things. Here is the list of keywords used in
Standard C; you will notice that none of them use upper-case letters.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Table 2.3 - Keywords

The new keywords that are likely to surprise old programmers are: const,  signed,
void and  volatile (although  void has  been  around  for  a  while).  Eagle  eyed
readers  may  have  noticed  that  some  implementations  of  C  used  to  use  the
keywords entry, asm, and fortran. These are not part of the Standard, and few will
mourn them.



2.4.2. Identifiers
Identifier is the fancy term used to mean 'name'. In C, identifiers are used to refer to
a number of things: we've already seen them used to name variables and functions.
They are also used to give names to some things we haven't seen yet, amongst
which are labels and the 'tags' of structures, unions, and enums.

The rules for the construction of identifiers are simple: you may use the 52 upper
and lower case alphabetic characters, the 10 digits and finally the underscore '_',
which  is  considered  to  be  an  alphabetic  character  for  this  purpose.  The  only
restriction is the usual one; identifiers must start with an alphabetic character.

Although there is no restriction on the length of identifiers in the Standard, this is a
point that needs a bit of explanation. In Old C, as in Standard C, there has never
been any restriction on the length of identifiers. The problem is that there was never
any guarantee that more than a certain number of characters would be checked
when  names  were  compared  for  equality-in  Old C  this  was  eight  characters,  in
Standard C this has changed to 31.

So, practically speaking, the new limit is 31 characters-although identifiers may be
longer, they must differ in the first 31 characters if you want to be sure that your
programs are portable. The Standard allows for implementations to support longer
names if they wish to, so if you do use longer names, make sure that you don't rely
on the checking stopping at 31.

One  of  the  most  controversial  parts  of  the  Standard  is  the  length  of  external
identifiers.  External  identifiers  are  the  ones  that  have  to  be  visible  outside  the
current  source  code file.  Typical  examples of  these would be library  routines or
functions which have to be called from several different source files.

The Standard chose to stay with the old restrictions on these external names: they
are not guaranteed to be different unless they differ from each other in the first six
characters. Worse than that, upper and lower case letters may be treated the same!

The reason for this is a pragmatic one: the way that most C compilation systems
work  is  to  use  operating  system  specific  tools  to  bind  library  functions  into  a
C program.  These  tools  are  outside  the  control  of  the  C compiler  writer,  so  the
Standard has to impose realistic limits that are likely to be possible to meet. There is
nothing to prevent any specific implementation from giving better limits than these,
but  for  maximum portability  the six  monocase  characters  must  be all  that  you
expect. The Standard warns that it views both the use of only one case and any
restriction  on  the  length  of  external  names  to  less  than  31 characters  as
obsolescent features. A later standard may insist that the restrictions are lifted; let's
hope that it is soon.

2.5. Declaration of variables
You may remember that in Chapter     1 we said that you have to declare the names of
things before you can use them (the only exceptions to this rule are the names of



functions returning  int, because they are declared by default, and the names of
labels). You can do it either by using a declaration, which introduces just the name
and type of something but allocates no storage, or go further by using a definition,
which also allocates the space used by the thing being declared.

The distinction between declaration and definition is an important one, and it is a
shame that the two words sound alike enough to cause confusion. From now on they
will  have to be used for their formal meaning, so if  you are in doubt about the
differences between them, refer back to this point.

The rules about what makes a declaration into a definition are rather complicated,
so they will be deferred for a while. In the meantime, here are some examples and
rule-of-thumb guidelines which will work for the examples that we have seen so far,
and will do for a while to come.

/*
* A function is only defined if its body is given
* so this is a declaration but not a definition
*/
int func_dec(void);
/*
* Because this function has a body, it is also
* a definition.
* Any variables declared inside will be definitions,
* unless the keyword 'extern' is used.
* Don't use 'extern' until you understand it!
*/
int def_func(void){
     float f_var;            /* a definition */
     int counter;            /* another definition */
     int rand_num(void);     /* declare (but not define) another 
function */
     return(0);
}

Exercise     2.1. Why are trigraphs used?

Exercise     2.2. When would you expect to find them in use, and when not?

Exercise     2.3. When is a newline not equivalent to a space or tab?

Exercise     2.4. When would you see the sequence of 'backslash newline' in use?

Exercise     2.5. What happens when two strings are put side by side?

Exercise     2.6. Why can't you put one piece of comment inside another one? (This
prevents the technique of 'commenting out' unused bits of program, unless you are
careful.)

Exercise     2.7. What are the longest names that may safely be used for variables?

Exercise     2.8. What is a declaration?



Exercise     2.9. What is a definition?

Now we go on to look at the type of variables and expressions.

2.6. Real types
It's easier to deal with the real types first because there's less to say about them
and they don't get as complicated as the integer types. The Standard breaks new
ground by laying down some basic guarantees on the precision and range of the
real numbers; these are found in the header file float.h which is discussed in detail
in Chapter     9. For some users this is extremely important information, but it is of a
highly  technical  nature  and  is  likely  only  to  be  fully  understood  by  numerical
analysts.

The varieties of real numbers are these:

float
double
long double

Each of the types gives access to a particular way of representing real numbers in
the target computer. If it only has one way of doing things, they might all turn out to
be the same; if it has more than three, then C has no way of specifying the extra
ones. The type float is intended to be the small, fast representation corresponding
to what FORTRAN would call  REAL. You would use  double for extra precision, and
long double for even more.

The main points of interest are that in the increasing 'lengths' of float, double and
long double, each type must give at least the same range and precision as the
previous type. For example, taking the value in a double and putting it into a long
double must result in the same value.

There  is  no requirement  for  the  three types  of  'real'  variables  to  differ  in  their
properties, so if a machine only has one type of real arithmetic, all of C's three types
could be implemented in the same way. None the less, the three types would be
considered to be different from the point of view of type checking; it would be 'as if'
they really were different.  That helps when you move the program to a system
where the three types really are different-there won't suddenly be a set of warnings
coming out of your compiler about type mismatches that you didn't get on the first
system.

In contrast to more 'strongly typed' languages, C permits expressions to mix all of
the scalar types: the various flavours of integers, the real numbers and also the
pointer types. When an expression contains a mixture of arithmetic (integer and
real) types there are implicit conversions invoked which can be used to work out
what the overall type of the result will be. These rules are quite important and are
known as the  usual  arithmetic conversions; it  will  be worth committing them to
memory later. The full set of rules is described in Section     2.8; for the moment, we



will investigate only the ones that involve mixing float,  double and long double
to see if they make sense.

The only  time that  the conversions are  needed is  when two different  types are
mixed in an expression, as in the example below:

int f(void){
        float f_var;
        double d_var;
        long double l_d_var;
        f_var = 1; d_var = 1; l_d_var = 1;
        d_var = d_var + f_var;
        l_d_var = d_var + f_var;
        return(l_d_var);
}

Example 2.5

There are a lot of forced conversions in that example. Getting the easiest of them
out of the way first, let's look at the assignments of the constant value 1 to each of
the variables. As the section on constants will point out, that 1 has type int, i.e. it is
an integer, not a real constant. The assignment converts the integer value to the
appropriate real type, which is easy to cope with.

The interesting conversions come next. The first of them is on the line

d_var = d_var + f_var;

What is the type of the expression involving the  + operator? The answer is easy
when you know the rules.  Whenever two different real  types are involved in an
expression,  the  lower  precision  type  is  first  implicitly  converted  to  the  higher
precision type and then the arithmetic is performed at that precision. The example
involves both a  double and a  float, so the value of  f_var is converted to type
double and  is  then added to  the value of  the  double  d_var.  The result  of  the
expression is naturally of type  double too, so it is clearly of the correct type to
assign to d_var.

The second of the additions is a little bit more complicated, but still perfectly O.K.
Again,  the  value  of  f_var is  converted  and  the  arithmetic  performed  with  the
precision of double, forming the sum of the two variables. Now there's a problem.
The result (the sum) is double, but the assignment is to a long double. Once again
the obvious procedure is to convert the lower precision value to the higher one,
which is done, and then make the assignment.

So we've taken the easy ones. The difficult thing to see is what to do when forced to
assign a higher precision result to a lower precision destination. In those cases it
may be  necessary  to  lose  precision,  in  a  way specified  by the implementation.
Basically, the implementation must specify whether and in what way it rounds or
truncates. Even worse, the destination may be unable to hold the value at all. The



Standard says that in these cases loss of precision may occur; if the destination is
unable  to  hold  the  necessary  value-say  by  attempting  to  add  the  largest
representable number to itself-then the behaviour is  undefined, your program is
faulty  and  you  can  make  no  predictions  whatsoever  about  any  subsequent
behaviour.

It is no mistake to re-emphasize that last statement. What the Standard means by
undefined  behaviour is  exactly  what  it  says.  Once  a  program's  behaviour  has
entered the undefined region, absolutely anything can happen. The program might
be stopped by the operating system with an appropriate message, or just as likely
nothing observable would happen and the program be allowed to continue with an
erroneous value stored in the variable in question. It is your responsibility to prevent
your program from exhibiting undefined behaviour. Beware!

Summary of real arithmatic
 Arithmetic with any two real  types is done at the highest precision of the

members involved.
 Assignment  involves  loss  of  precision  if  the  receiving  type  has  a  lower

precision than the value being assigned to it.
 Further conversions are often implied when expressions mix other types, but

they have not been described yet.

2.6.1. Printing real numbers
The usual output function,  printf, can be used to format real numbers and print
them. There are a number of ways to format these numbers, but we'll stick to just
one for now. Table  2 .4 below shows the appropriate format description for each of
the real types.

Type
Forma

t

float %f

double %f

long double %lf

Table 2.4 - Format codes for real numbers

Here's an example to try:



#include <stdio.h>
#include <stdlib.h>
#define BOILING 212     /* degrees Fahrenheit */
main(){
      float f_var; double d_var; long double l_d_var;
      int i;
      i = 0;
      printf("Fahrenheit to Centigrade\n");
      while(i <= BOILING){
              l_d_var = 5*(i-32);
              l_d_var = l_d_var/9;
              d_var = l_d_var;
              f_var = l_d_var;
              printf("%d %f %f %lf\n", i,
                      f_var, d_var, l_d_var);
              i = i+1;
      }
      exit(EXIT_SUCCESS);
}

Example 2.6

Try that example on your own computer to see what results you get.

Exercise     2.10. Which type of variable can hold the largest range of values?

Exercise     2.11. Which type of variable can store values to the greatest precision?

Exercise     2.12. Are there any problems possible when assigning a float or double to
a double or long double?

Exercise     2.13. What  could  go  wrong  when  assigning,  say,  a  long double to  a
double?

Exercise     2.14. What predictions can you make about a program showing 'undefined
behaviour'?

2.7. Integral types
The  real  types  were  the  easy  ones.  The  rules  for  the  integral  types  are  more
complicated, but still tolerable, and these rules really should be learnt. Fortunately,
the only types used in C for routine data storage are the real and integer types, or
structures and arrays built up from them. C doesn't have special types for character
manipulation or the handling of logical (boolean) quantities, but uses the integral
types instead. Once you know the rules for the reals and the integers you know
them all.

We will start by looking at the various types and then the conversion rules.

2.7.1. Plain integers
There are two types (often called 'flavours') of integer variables. Other types can be
built from these, as we'll  see, but the plain undecorated  ints are the base. The



most obvious of the pair is the 'signed' int, the less obvious is its close relative, the
unsigned int. These variables are supposed to be stored in whatever is the most
convenient  unit  for  the  machine  running  your  program.  The  int is  the  natural
choice  for  undemanding  requirements  when  you  just  need  a  simple  integral
variable,  say as a counter in  a short  loop.  There isn't  any guarantee about the
number of bits that an int can hold, except that it will always be 16 or more. The
standard header file  <limits.h> details the actual  number of bits available in a
given implementation.

Curiously,  Old C  had no guarantee  whatsoever  about  the length of  an  int,  but
consensus and common practice has always assumed at least 16 bits.

Actually,  <limits.h> doesn't quite specify a number of bits, but gives maximum
and minimum values for an int instead. The values it gives are 32767 and -32767
which implies 16 bits or more, whether ones or twos complement arithmetic is used.
Of course there is nothing to stop a given implementation from providing a greater
range in either direction.

The range specified in the Standard for an  unsigned int is 0 to at least 65535,
meaning that it cannot be negative. More about these shortly.

If you aren't used to thinking about the number of bits in a given variable, and are
beginning  to  get  worried  about  the  portability  implications  of  this  apparently
machine-dependent  concern for  the number of  bits,  then you're  doing the right
thing. C takes portability seriously and actually bothers to tell you what values and
ranges are guaranteed to be safe. The bitwise operators encourage you to think
about the number of bits in a variable too, because they give direct access to the
bits,  which  you  manipulate  one  by  one  or  in  groups.  Almost  paradoxically,  the
overall result is that C programmers have a healthy awareness of portability issues
which leads to more portable programs.  This is  not to say that you can't  write
C programs that are horribly non-portable!

2.7.2. Character variables
A bit less obvious than int is the other of the plain integral types, the  char.  It's
basically just another sort of int, but has a different application. Because so many
C programs do a lot of character handling, it's a good idea to provide a special type
to help, especially if the range provided by an int uses up much more storage than
is needed by characters.  The limits file tells us that three things are guaranteed
about  char variables:  they  have  at  least  8  bits,  they  can  store  a  value  of  at
least +127, and the minimum value of a char is zero or lower. This means that the
only guaranteed range is 0-127. Whether or not char variables behave as signed or
unsigned types is implementation defined.

In short, a character variable will probably take less storage than an  int and will
most likely be used for character manipulation. It's still an integer type though, and
can be used for arithmetic, as this example shows.



include <limits.h>
include <stdio.h>
include <stdlib.h>
main(){
      char c;
      c = CHAR_MIN;
      while(c != CHAR_MAX){
              printf("%d\n", c);
              c = c+1;
      }
      exit(EXIT_SUCCESS);
}

Example 2.7

Running  that  program  is  left  as  an  exercise  for  the  easily  amused.  If  you  are
bothered about where CHAR_MIN and CHAR_MAX come from, find limits.h and read
it.

Here's a more enlightening example. It uses character constants, which are formed
by placing a character in single quotes:

'x'

Because of the rules of arithmetic, the type of this sort of constant turns out to be
int, but that doesn't matter since their value is always small enough to assign them
to  char variables without any loss of precision. (Unfortunately, there is a related
version where that guarantee does not hold. Ignore it for the moment.) When a
character  variable  is  printed  using  the  %c format  with  printf,  the  appropriate
character is output. You can use %d, if you like, to see what integer value is used to
represent the character. Why %d? Because a char is just another integral type.

It's also useful to be able to read characters into a program. The library function
getchar is used for the job. It reads characters from the program's standard input
and returns an  int value suitable for storing into a  char. The int value is for one
reason only: not only does getchar return all possible character values, but it also
returns an extra value to indicate that end-of-input has been seen. The range of a
char might not be enough to hold this extra value, so the int has to be used.

The following program reads its input and counts the number of commas and full
stops that it sees. On end-of-input, it prints the totals.



#include <stdio.h>
#include <stdlib.h>
main(){
      int this_char, comma_count, stop_count;
      comma_count = stop_count = 0;
      this_char = getchar();
      while(this_char != EOF){
              if(this_char == '.')
                      stop_count = stop_count+1;
              if(this_char == ',')
                      comma_count = comma_count+1;
              this_char = getchar();
      }
      printf("%d commas, %d stops\n", comma_count,
                      stop_count);
      exit(EXIT_SUCCESS);
}

Example 2.8

The two features of note in that example were the multiple assignment to the two
counters and the use of the defined constant  EOF.  EOF is the value returned by
getchar on end of input (it stands for End Of File), and is defined in <stdio.h>. The
multiple assignment is a fairly common feature of C programs.

Another example, perhaps. This will either print out the whole lower case alphabet,
if your implementation has its characters stored consecutively, or something even
more interesting if they aren't. C doesn't make many guarantees about the ordering
of characters in internal form, so this program produces non-portable results!

#include <stdio.h>
#include <stdlib.h>
main(){
      char c;
      c = 'a';
      while(c <= 'z'){
              printf("value %d char %c\n", c, c);
              c = c+1;
      }
      exit(EXIT_SUCCESS);
}

Example 2.9

Yet  again  this  example emphasizes that  a  char is  only  another  form of  integer
variable and can be used just like any other form of variable. It is  not a 'special'
type with its own rules.

The  space  saving  that  a  char offers  when  compared  to  an  int only  becomes
worthwhile if  a lot of them are being used. Most character-processing operations
involve the use of not just one or two character variables, but large arrays of them.



That's when the saving can become noticeable: imagine an array of 1024 ints. On
a lot of common machines that would eat up 4096 8-bit bytes of storage, assuming
the common length of 4 bytes per int. If the computer architecture allows it to be
done in a reasonably efficient way, the C implementor will probably have arranged
for  char variables  to  be  packed  one  per  byte,  so  the  array  would  only  use
1024 bytes and the space saving would be 3072 bytes.

Sometimes  it  doesn't  matter  whether  or  not  a  program  tries  to  save  space;
sometimes it does. At least C gives you the option of choosing an appropriate type.

2.7.3. More complicated types
The last two types were simple, in both their declaration and subsequent use. For
serious systems programming they just aren't adequate in the precision of control
over storage that they provide and the behaviour that they follow. To correct this
problem, C provides extra forms of integral types, split into the categories of signed
and  unsigned.  (Although both these terms are reserved words, they will  also be
used as adjectives.) The difference between the two types is obvious. Signed types
are  those  that  are  capable  of  being  negative,  the  unsigned  types  cannot  be
negative at any time. Unsigned types are usually used for one of two reasons: to get
an  extra  bit  of  precision,  or  when the  concept  of  being  negative  is  simply  not
present in the data that is being represented. The latter is by far the better reason
for choosing them.

Unsigned types also have the special property of never overflowing in arithmetic.
Adding 1 to a signed variable that already contains the maximum possible positive
number for its type will result in overflow, and the program's behaviour becomes
undefined. That can never happen with unsigned types, because they are defined to
work 'modulo one greater than the maximum number that they can hold'. What this
means is best illustrated by example:

#include <stdio.h>
#include <stdlib.h>
main(){
      unsigned int x;
      x = 0;
      while(x >= 0){
              printf("%u\n", x);
              x = x+1;
      }
      exit(EXIT_SUCCESS);
}

Example 2.10

Assuming that the variable x is stored in 16 bits, then its range of values will be 0-
65535 and that sequence will be printed endlessly. The program can't terminate:
the test

x >= 0



must always be true for an unsigned variable.

For both the signed and unsigned integral types there are three subtypes:  short,
ordinary and  long. Taking those into account, here is a list of all of the possible
integral types in C, except for the character types:

unsigned short int
unsigned int
unsigned long int
signed short int
signed int
signed long int

In the last three, the  signed keyword is unnecessary because the  int types are
signed types anyway: you have to say unsigned to get anything different. It's also
permissible,  but  not  recommended,  to  drop  the  int  keyword  from any  of  those
declarations provided that there is at least one other keyword present-the int will
be 'understood' to be present. For example long is equivalent to signed long int.
The long and short kinds give you more control over the amount of space used to
store variables. Each has its own minimum range specified in <limits.h> which in
practice means at least 16 bits in a short and an int, and at least 32 bits in a long,
whether signed or unsigned. As always, an implementation can choose to give you
more bits than the minimum if it wants to. The only restriction is that the limits must
be equalled or bettered, and that you don't get more bits in a shorter type than a
longer one (not an unreasonable rule).

The  only  character  types  are  the  signed  char and  the  unsigned  char.  The
difference between char and int variables is that, unless otherwise stated, all ints
are signed. The same is not true for chars, which are signed or unsigned depending
on the implementor's choice; the choice is presumably taken on efficiency grounds.
You can of course explicitly force signed or unsignedness with the right keyword.
The only time that it is likely to matter is if you are using character variables as
extra short shorts to save more space.

Summary of integral types
 The integral types are the short, long, signed, unsigned and plain ints.
 The commonest is the ordinary  int, which is signed unless declared not to

be.
The  char variables  can be made signed or unsigned,  as you prefer,  but in the
absence of indications to the contrary, they will be allocated the most efficient type.

2.7.4. Printing the integral types
Once again you can use  printf to print these various types. Character variables
work exactly the same way that the other integral variables do, so you can use the
standard format letters to print their contents-although the actual numbers stored
in them are not likely to be very interesting. To see their contents interpreted as
characters, use %c as was done earlier. All of the integral types can be printed as if



they were signed decimal numbers by using the  %d format, or  %ld for long types.
Other useful formats are shown in Table  2 .5; notice that in every case a letter 'l' is
put in front of the normal format letter if a  long is to be printed. That's not just
there to get the right result printed: the behaviour of  printf is undefined if the
wrong format is given.

Format Use with

%c char (in character form)

%d decimal signed int, short, char

%u decimal unsigned int, unsigned short, unsigned char

%x hexadecimal int, short, char

%o octal int, short, char

%ld decimal signed long

%lu %lx %lo as above, but for longs

Table 2.5 - More format codes

A full  description  of  the  format  codes  that  you  can  use  with  printf  is  given  in
Chapter     9.

2.8. Expressions and arithmetic
Expressions in C can get rather complicated because of the number of different
types  and  operators  that  can  be  mixed  together.  This  section  explains  what
happens, but can get deep at times. You may need to re-read it once or twice to
make sure that you have understood all of the points.

First, a bit of terminology. Expressions in C are built from combinations of operators
and operands, so for example in this expression

x = a+b*(-c)

we have the operators =,  + * and -. The operands are the variables x,  a,  b and c.
You  will  also  have  noticed  that  parentheses  can  be  used  for  grouping  sub-
expressions such as the -c. Most of C's unusually rich set of operators are either
binary operators, which take two operands, or unary operators, which take only one.
In the example, the - was being used as a unary operator,  and is performing a
different task from the binary subtraction operator which uses the same - symbol. It
may seem like hair-splitting to argue that they are different operators when the job
that  they do seems conceptually  the same,  or  at  least  similar.  It's  worth  doing
though, because, as you will find later, some of the operators have both a binary
and a unary form where the two meanings bear no relation to each other; a good



example  would  be  the  binary  multiplication  operator *,  which  in  its  unary  form
means indirection via a pointer variable!

A peculiarity of C is that operators may appear consecutively in expressions without
the need for parentheses to separate them. The previous example could have been
written as

x = a+b*-c;

and still have been a valid expression. Because of the number of operators that C
has, and because of the strange way that assignment works, the precedence of the
operators  (and  their  associativity)  is  of  much  greater  importance  to  the
C programmer than in most  other  languages.  It  will  be discussed fully  after  the
introduction of the important arithmetic operators.

Before that, we must investigate the type conversions that may occur.

2.8.1. Conversions
C allows types to be mixed in expressions, and permits operations that result in type
conversions  happening  implicitly.  This  section  describes  the  way  that  the
conversions must occur. Old C programmers should read this carefully, because the
rules  have  changed  -  in  particular,  the  promotion  of  float to  double,  the
promotions of short integral types and the introduction of value preserving rules are
genuinely different in Standard C.

Although it isn't directly relevant at the moment, we must note that the integral and
the floating types are jointly known as  arithmetic types and that C also supports
other types (notably pointer types). The rules that we discuss here are appropriate
only in expressions that have arithmetic types throughout - additional rules come
into play when expressions mix pointer types with arithmetic types and these are
discussed much later.

There are various types of conversion in arithmetic expressions:

 The integral promotions

 Conversions between integral types

 Conversions between floating types

 Conversions between floating and integral types

Conversions between floating (real) types were discussed in Section     2.8; what we do
next is  to  specify how the other conversions are  to be performed,  then look at
when they are required. You will need to learn them by heart if you ever intend to
program seriously in C.

The Standard has, among some controversy, introduced what are known as  value
preserving rules, where a knowledge of the target computer is required to work out
what  the type of  an expression  will  be.  Previously,  whenever an unsigned type
occurred in an expression, you knew that the result had to be unsigned too. Now,



the result will only be  unsigned if the conversions demand it; in many cases the
result will be an ordinary signed type.

The reason for the change was to reduce some of the surprises possible when you
mix signed and unsigned quantities together; it isn't always obvious when this has
happened and the intention is to produce the 'more commonly required' result.

2.8.1.1. Integral promotions
No arithmetic is done by C at a precision shorter than int, so these conversions are
implied almost whenever you use one of the objects listed below in an expression.
The conversion is defined as follows:

 Whenever a  short or  a  char (or  a  bitfield or  enumeration type which we
haven't met yet) has the integral promotions applied 

 if an int can hold all of the values of the original type then the value is
converted to int

otherwise, the conversion will be to unsigned int

This preserves both the value and the sign of the original type. Note that whether a
plain char is treated as signed or unsigned is implementation dependent.

These  promotions  are  applied  very  often-they  are  applied  as  part  of  the  usual
arithmetic conversions, and to the operands of the shift, unary +, -, and ~ operators.
They are also applied when the expression in question is an argument to a function
but  no  type  information  has  been provided  as  part  of  a  function  prototype,  as
explained in Chapter     4.

2.8.1.2. Signed and unsigned integers
A lot of conversions between different types of integers are caused by mixing the
various flavours of integers in expressions. Whenever these happen, the integral
promotions will already have been done. For all of them, if the new type can hold all
of the values of the old type, then the value remains unchanged.

When converting from a signed integer  to  an unsigned integer  whose length is
equal to or longer than the original type, then if the signed value was nonnegative,
its value is unchanged. If the value was negative, then it is converted to the signed
form of the longer type and then made unsigned by conceptually adding it to one
greater  than  the  maximum  that  can  be  held  in  the  unsigned  type.  In  a  twos
complement system, this preserves the original bit-pattern for positive numbers and
guarantees 'sign-extension' of negative numbers.

Whenever an integer is converted into a shorter unsigned type, there can be no
'overflow', so the result is defined to be 'the non-negative remainder on division by
the number one greater than the largest unsigned number that can be represented
in the shorter type'. That simply means that in a two's complement environment the
low-order bits are copied into the destination and the high-order ones discarded.



Converting an integer  to  a shorter  signed type runs  into trouble  if  there is  not
enough room to hold the value. In that case, the result is implementation defined
(although most  old-timers  would  expect  that  simply the low-order  bit  pattern  is
copied).

That last item could be a bit worrying if  you remember the integral  promotions,
because you might interpret it as follows-if I assign a char to another char, then the
one on  the  right  is  first  promoted  to  one  of  the  kinds  of  int;  could  doing  the
assignment  result  in  converting  (say)  an  int to  a  char  and  provoking  the
'implementation defined' clause? The answer is no, because assignment is specified
not to involve the integral promotions, so you are safe.

2.8.1.3. Floating and integral
Converting a floating to an integral type simply throws away any fractional part. If
the integral type can't hold the value that is left, then the behaviour is undefined-
this is a sort of overflow.

As has already been said, going up the scale from float to double to long double,
there is no problem with conversions-each higher one in the list can hold all the
values of the lower ones, so the conversion occurs with no loss of information.

Converting in the opposite direction, if the value is outside the range that can be
held, the behaviour is undefined. If the value is in range, but can't be held exactly,
then the result is one of the two nearest values that can be held, chosen in a way
that the implementation defines. This means that there will be a loss of precision.

2.8.1.4. The usual arithmetic conversions
A lot of expressions involve the use of subexpressions of mixed types together with
operators such as +,  * and so on. If the operands in an expression have different
types, then there will have to be a conversion applied so that a common resulting
type can be established; these are the conversions:

 If either operand is a long double, then the other one is converted to long
double and that is the type of the result.

 Otherwise, if either operand is a double, then the other one is converted to
double, and that is the type of the result.

 Otherwise, if either operand is a  float, then the other one is converted to
float, and that is the type of the result.

 Otherwise  the  integral  promotions  are  applied  to  both  operands  and  the
following conversions are applied: 

 If  either  operand  is  an  unsigned long int,  then  the  other  one  is
converted to unsigned long int, and that is the type of the result.

 Otherwise,  if  either  operand  is  a  long int,  then  the  other  one  is
converted to long int, and that is the type of the result.

 Otherwise, if either operand is an unsigned int, then the other one is
converted to unsigned int, and that is the type of the result.

Otherwise, both operands must be of type int, so that is the type of the result.



The Standard contains a strange sentence: 'The values of floating operands and of
the  results  of  floating  expressions  may be  represented  in  greater  precision  and
range than that required by the type; the types are not changed thereby'. This is in
fact  to  allow  the  Old C  treatment  of  floats.  In  Old C,  float variables  were
automatically promoted to  double, the way that the integral promotions promote
char to int. So, an expression involving purely float variables may be done as if
they were  double, but the type of the result must appear to be  float. The only
effect is likely to be on performance and is not particularly important to most users.

Whether or not conversions need to be applied, and if so which ones, is discussed at
the point where each operator is introduced.

In general, the type conversions and type mixing rules don't cause a lot of trouble,
but there is one pitfall to watch out for. Mixing signed and unsigned quantities is
fine until the signed number is negative; then its value can't be represented in an
unsigned variable and something has to happen. The standard says that to convert
a negative number to unsigned, the largest possible number that can be held in the
unsigned plus one is added to the negative number;  that is the result.  Because
there can be no overflow in an unsigned type, the result always has a defined value.
Taking a 16-bit  int for an example, the unsigned version has a range of 0-65535.
Converting  a  signed  value  of -7  to  this  type  involves  adding 65536,  resulting
in 65529. What is happening is that the Standard is enshrining previous practice,
where the bit  pattern in the signed number is  simply assigned to the unsigned
number; the description in the standard is exactly what would happen if you did
perform the bit pattern assignment on a two's complement computer.  The one's
complement implementations are going to have to do some real work to get the
same result.

Putting it plainly, a small magnitude negative number will result in a large positive
number when converted to unsigned. If you don't like it, suggest a better solution-it
is plainly a mistake to try to assign a negative number to an unsigned variable, so
it's your own fault.

Well, it's easy to say 'don't do it', but it can happen by accident and the results can
be very surprising. Look at this example.



#include <stdio.h>
#include <stdlib.h>
main(){
      int i;
      unsigned int stop_val;
      stop_val = 0;
      i = -10;
      while(i <= stop_val){
              printf("%d\n", i);
              i = i + 1;
      }
      exit(EXIT_SUCCESS);
}

Example 2.11

You might expect that to print out the list of values from -10 to 0, but it won't. The
problem is in the comparison. The variable i, with a value of -10, is being compared
against an unsigned 0.  By the rules of arithmetic (check them) we must convert
both types to unsigned int first, then make the comparison. The -10 becomes at
least 65526 (see  <limits.h>) when it's converted, and is plainly somewhat larger
than 0,  so  the  loop  is  never  executed.  The  moral  is  to  steer  clear  of  unsigned
numbers unless you really have to use them, and to be perpetually on guard when
they are mixed with signed numbers.

2.8.1.5. Wide characters
The Standard, as we've already said, now makes allowances for extended character
sets.  You can either use the shift-in shift-out encoding method which allows the
multibyte charactes to be stored in ordinary C strings (which are really arrays of
chars, as we explore later), or you can use a representation that uses more than
one byte of storage per character for every character. The use of shift sequences
only works if you process the characters in strict order; it is next to useless if you
want to create an array of  characters  and access them in non-sequential  order,
since the actual index of each char in the array and the logical index of each of the
encoded  characters  are  not  easily  determined.  Here's  the  illustration  we  used
before, annotated with the actual and the logical array indexes:

0 1 2  3   4 5 6  7   8 9 (actual array index)
a b c <SI> a b g <SO> x y
0 1 2      3 4 5      6 7 (logical index)

We're still  in trouble even if  we do manage to use the index of 5 to access the
'correct' array entry, since the value retrieved is indistinguishable from the value
that encodes the letter 'g' anyhow. Clearly, a better approach for this sort of thing is
to come up with a distinct value for all of the characters in the character set we are
using, which may involve more bits than will fit into a char, and to be able to store
each one as a separate item without the use of shifts or other position-dependent
techniques. That is what the wchar_t type is for.



Although it is always a synonym for one of the other integral types, wchar_t (whose
definition is found in  <stddef.h>) is defined to be the implementation-dependent
type that should be used to hold extended characters when you need an array of
them. The Standard makes the following guarantees about the values in a wide
character:

 A wchar_t can hold distinct values for each member of the largest character
set supported by the implementation.

 The null character has the value of zero.
Each member of the basic character set (see Section     2.2.1) is encoded in a wchar_t
with the same value as it has in a char.

There is further support for this method of encoding characters. Strings, which we
have already seen, are implemented as arrays of char, even though they look like
this:

"a string"

To get strings whose type is  wchar_t, simply prefix a string with the letter L. For
example:

L"a string"

In the two examples, it is very important to understand the differences. Strings are
implemented as arrays and although it might look odd, it is entirely permissible to
use array indexing on them:

"a string"[4]
L"a string"[4]

are both valid expressions. The first results in an expression whose type is char and
whose value is the internal representation of the letter 'r' (remember arrays index
from zero, not one). The second has the type wchar_t and also has the value of the
internal representation of the letter 'r'.

It  gets  more  interesting  if  we  are  using  extended  characters.  If  we  use  the
notation <a>,  <b>, and so on to indicate 'additional' characters beyond the normal
character set which are encoded using some form of shift technique, then these
examples show the problems.

"abc<a><b>"[3]
L"abc<a><b>"[3]

The second one is easiest: it has a type of  wchar_t and the appropriate internal
encoding for whatever <a> is supposed to be-say the Greek letter alpha. The first
one is unpredictable. Its type is unquestionably char, but its value is probably the
value of the 'shift-in' marker.

As with strings, there are also wide character constants.

'a'



has type char and the value of the encoding for the letter 'a'.

L'a'

is a constant of type wchar_t. If you use a multibyte character in the first one, then
you have the same sort of thing as if you had written

'xy'

-multiple  characters  in  a  character  constant  (actually,  this  is  valid  but  means
something funny). A single multibyte character in the second example will simply be
converted into the appropriate wchar_t value.

If you don't understand all the wide character stuff, then all we can say is that we've
done our  best  to  explain  it.  Come back  and read  it  again  later,  when it  might
suddenly  click.  In  practice  it  does  manage  to  address  the  support  of  extended
character sets in C and once you're used to it, it makes a lot of sense.

Exercise     2.15. Assuming  that  chars,  ints and  longs are  respectively 8,  16
and 32 bits long, and that char defaults to unsigned char on a given system, what
is  the  resulting  type  of  expressions  involving  the  following  combinations  of
variables, after the usual arithmetic conversions have been applied?

a. Simply signed char.
b. Simply unsigned char.
c. int, unsigned int.
d. unsigned int, long.
e. int, unsigned long.
f. char, long.
g. char, float.
h. float, float.
i. float, long double.

2.8.1.6. Casts
From time to time you will find that an expression turns out not to have the type
that you wanted it to have and you would like to force it to have a different type.
That is what casts are for. By putting a type name in parentheses, for example

(int)

you  create  a  unary  operator  known  as  a  cast.  A  cast  turns  the  value  of  the
expression on its right into the indicated type. If, for example, you were dividing two
integers a/b then  the  expression  would  use  integer  division  and  discard  any
remainder. To force the fractional part to be retained, you could either use some
intermediate float variables, or a cast. This example does it both ways.



#include <stdio.h>
#include <stdlib.h>
/*
* Illustrates casts.
* For each of the numbers between 2 and 20,
* print the percentage difference between it and the one
* before
*/
main(){
      int curr_val;
      float temp, pcnt_diff;
      curr_val = 2;
      while(curr_val <= 20){
              /*
               * % difference is
               * 1/(curr_val)*100
               */
              temp = curr_val;
              pcnt_diff = 100/temp;
              printf("Percent difference at %d is %f\n",
                      curr_val, pcnt_diff);
              /*
               * Or, using a cast:
               */
              pcnt_diff = 100/(float)curr_val;
              printf("Percent difference at %d is %f\n",
                      curr_val, pcnt_diff);
              curr_val = curr_val + 1;
      }
      exit(EXIT_SUCCESS);
}

Example 2.12

The easiest way to remember how to write a cast is to write down exactly what you
would use to declare a variable of the type that you want. Put parentheses around
the entire declaration, then delete the variable name; that gives you the cast. Table
 2 .6 shows a few simple examples-some of the types shown will be new to you, but
it's the complicated ones that illustrate best how casts are written. Ignore the ones
that  you  don't  understand yet,  because  you will  be  able  to  use the  table  as  a
reference later.

Declaration Cast Type

int x; (int) int

float f; (float) float

char x[30]; (char [30]) array of char

int *ip; (int *) pointer to int



Declaration Cast Type

int (*f)(); (int (*)())
pointer to function 
returning int

Table 2.6 - Casts

2.8.2. Operators

2.8.2.1. The multiplicative operators
Or,  put  another  way,  multiplication *,  division / and  the  remainder  operator %.
Multiplication and division do what is expected of them for both real and integral
types, with integral division producing a truncated result. The truncation is towards
zero. The remainder operator is only defined to work with integral types, because
the division of real numbers supposedly doesn't produce a remainder.

If the division is not exact and neither operand is negative, the result of / is positive
and rounded toward zero-to get the remainder, use %. For example,

9/2 == 4
9%2 == 1

If either operand is negative, the result of / may be the nearest integer to the true
result on either side, and the sign of the result of % may be positive or negative.
Both of these features are implementation defined.

It is always true that the following expression is equal to zero:

(a/b)*b + a%b - a

unless b is zero.

The usual arithmetic conversions are applied to both of the operands.

2.8.2.2. Additive operators
Addition + and  subtraction - also  follow  the  rules  that  you  expect.  The  binary
operators and the unary operators both have the same symbols, but rather different
meanings. For example, the expressions a+b and a-b both use a binary operator
(the + or - operators),  and result in addition or subtraction.  The unary operators
with the same symbols would be written +b or -b.

The unary minus has an obvious function-it takes the negative value of its operand;
what does the unary plus do? In fact the answer is almost nothing. The unary plus is
a new addition to the language, which balances the presence of the unary minus,
but doesn't have any effect on the value of the expression. Very few Old C users
even noticed that it was missing.



The usual arithmetic conversions are applied to both of the operands of the binary
forms of the operators. Only the integral promotions are performed on the operands
of the unary forms of the operators.

2.8.2.3. The bitwise operators
One of the great strengths of C is the way that it allows systems programmers to do
what had,  before the advent of C, always been regarded as the province of the
assembly code programmer. That sort of code was by definition highly non-portable.
As C demonstrates,  there isn't any magic about that sort  of  thing, and into the
bargain it turns out to be surprisingly portable. What is it? It's what is often referred
to as 'bit-twiddling'-the manipulation of individual bits in integer variables. None of
the bitwise operators may be used on real operands because they aren't considered
to have individual or accessible bits.

There are six bitwise operators, listed in Table  2 .7, which also shows the arithmetic
conversions that are applied.

Operat
or

Effect Conversions

& bitwise AND
usual arithmetic 
conversions

| bitwise OR
usual arithmetic 
conversions

^ Bitwise XOR
usual arithmetic 
conversions

<< left shift integral promotions

>> right shift integral promotions

~
one's 
complement

integral promotions

Table 2.7 - Bitwise operators

Only the last,  the one's complement, is a unary operator.  It  inverts the state of
every bit in its operand and has the same effect as the unary minus on a one's
complement computer. Most modern computers work with two's complement, so it
isn't a waste of time having it there.

Illustrating the use of these operators is easier if we can use hexadecimal notation
rather than decimal, so now is the time to see hexadecimal constants. Any number
written  with 0x at  its  beginning  is  interpreted  as  hexadecimal;  both 15 and 0xf
(or 0XF) mean the same thing. Try running this or, better still, try to predict what it
does first and then try running it.



#include <stdio.h>
#include <stdlib.h>
main(){
      int x,y;
      x = 0; y = ~0;
      while(x != y){
              printf("%x & %x = %x\n", x, 0xff, x&0xff);
              printf("%x | %x = %x\n", x, 0x10f, x|0x10f);
              printf("%x ^ %x = %x\n", x, 0xf00f, x^0xf00f);
              printf("%x >> 2 = %x\n", x, x >> 2);
              printf("%x << 2 = %x\n", x, x << 2);
              x = (x << 1) | 1;
      }
      exit(EXIT_SUCCESS);
}

Example 2.13

The  way  that  the  loop  works  in  that  example  is  the  first  thing  to  study.  The
controlling variable is x, which is initialized to zero. Every time round the loop it is
compared against y, which has been set to a word-length independent pattern of
all 1s by taking the one's complement of zero. At the bottom of the loop, x is shifted
left  once and has 1 ORed into it,  giving rise to a sequence that  starts 0,  1,  11,
111, ... in binary.

For each of the AND, OR, and XOR (exclusive OR) operators, x is operated on by the
operator and some other interesting operand, then the result printed.

The left and right shift operators are in there too, giving a result which has the type
and value of their left-hand operand shifted in the required direction a number of
places specified by their right-hand operand; the type of both of the operands must
be integral. Bits shifted off either end of the left operand simply disappear. Shifting
by more bits than there are in a word gives an implementation dependent result.

Shifting left guarantees to shift zeros into the low-order bits.

Right  shift  is  fussier.  Your  implementation  is  allowed  to  choose  whether,  when
shifting signed operands, it performs a logical or arithmetic right shift. This means
that a logical shift shifts zeros into the most significant bit positions; an arithmetic
shift  copies the current contents of  the most significant bit  back into itself.  The
position  is  clearer  if  an  unsigned  operand  is  right  shifted,  because  there  is  no
choice: it must be a logical shift. For that reason, whenever right shift is being used,
you would expect  to  find that  the thing being shifted had been declared  to be
unsigned, or cast to unsigned for the shift, as in the example:

int i,j;
i = (unsigned)j >> 4;

The second (right-hand) operand of a shift operator does not have to be a constant;
any integral  expression  is  legal.  Importantly,  the rules  involving mixed types  of



operands do not apply to the shift operators. The result of the shift has the same
type as the thing that got shifted (after the integral promotions), and depends on
nothing else.

Now something different; one of those little tricks that C programmers find helps to
write better programs. If for any reason you want to form a value that has 1s in all
but its least significant so-many bits, which are to have some other pattern in them,
you don't have to know the word length of the machine. For example, to set the low
order bits of an int to 0x0f0 and all the other bits to 1, this is the way to do it:

int some_variable;
some_variable = ~0xf0f;

The  one's  complement  of  the  desired  low-order  bit  pattern  has  been  one's
complemented.  That  gives  exactly  the  required  result  and  is  completely
independent of word length; it is a very common sight in C code.

There isn't a lot more to say about the bit-twiddling operators, and our experience
of teaching C has been that most people find them easy to learn. Let's move on.

2.8.2.4. The assignment operators
No,  that  isn't  a  mistake,  'operators'  was  meant  to  be  plural.  C has  several
assignment  operators,  even  though  we  have  only  seen  the  plain = so  far.  An
interesting thing about them is that they are all like the other binary operators; they
take two operands  and produce  a  result,  the  result  being  usable  as  part  of  an
expression. In this statement

x = 4;

the value 4 is assigned to x. The result has the type of x and the value that was
assigned. It can be used like this

a = (x = 4);

where a will now have the value 4 assigned to it, after x has been assigned to. All of
the simpler assignments that we have seen until  now (except for one example)
have simply  discarded the  resulting value  of  the assignment,  even though it  is
produced.

It's because assignment has a result that an expression like

a = b = c = d;

works. The value of d is assigned to c, the result of that is assigned to b and so on. It
makes use of  the fact  that  expressions  involving only assignment operators  are
evaluated from right to left, but is otherwise like any other expression. (The rules
explaining what groups right to left and vice versa are given in Table  2 .9.)

If you look back to the section describing 'conversions',  there is a description of
what happens if you convert longer types to shorter types: that is what happens



when the left-hand operand of an assignment is shorter than the right-hand one. No
conversions  are  applied  to  the  right-hand  operand  of  the  simple  assignment
operator.

The remaining assignment operators are the compound assignment operators. They
allow a useful shorthand, where an assignment containing the same left- and right-
hand sides can be compressed; for example

x = x + 1;

can be written as

x += 1;

using one of the compound assignment operators. The result is the same in each
case.  It  is  a  useful  thing  to  do  when  the  left-hand  side  of  the  operator  is  a
complicated expression, not just a variable; such things occur when you start to use
arrays and pointers. Most experienced C programmers tend to use the form given in
the  second  example  because  somehow  it  'feels  better',  a  sentiment  that  no
beginner  has  ever  been  known  to  agree  with.  Table   2  .8 lists  the  compound
assignment operators; you will see them used a lot from now on.

*= /= %=

+= -=

&= |= ^=

>>= <<=

Table 2.8 - Compound assignment operators

In  each  case,  arithmetic  conversions  are  applied  as  if  the expression  had been
written out in full, for example as if a+=b had been written a=a+b.

Reiterating: the result of an assignment operator has both the value and the type of
the object that was assigned to.

2.8.2.5. Increment and decrement operators
It is so common to simply add or subtract 1 in an expression that C has two special
unary operators to do the job. The increment operator ++ adds 1, the decrement --
subtracts 1. They are used like this:

x++;
++x;
x--;
--x;

where the operator can come either before or after its operand. In the cases shown
it doesn't matter where the operator comes,  but in more complicated cases the
difference has a definite meaning and must be used properly.



Here is the difference being used.

#include <stdio.h>
#include <stdlib.h>
main(){
      int a,b;
      a = b = 5;
      printf("%d\n", ++a+5);
      printf("%d\n", a);
      printf("%d\n", b++ +5);
      printf("%d\n", b);
      exit(EXIT_SUCCESS);
}

Example 2.14

The results printed were

11
6
10
6

The  difference  is  caused  by  the  different  positions  of  the  operators.  If  the
inc/decrement operator appears in front of the variable, then its value is changed by
one and the new value is used in the expression. If the operator comes after the
variable, then the  old value is used in the expression and the variable's value is
changed afterwards.

C programmers never add or subtract one with statements like this

x += 1;

they invariably use one of

x++; /* or */ ++x;

as a matter of course. A warning is in order though: it is not safe to use a variable
more than once in an expression if it has one of these operators attached to it.
There  is  no guarantee  of  when,  within  an  expression,  the affected  variable  will
actually change value. The compiler might choose to 'save up' all of the changes
and apply them at once, so an expression like this

y = x++ + --x;

does  not  guarantee  to  assign  twice  the  original  value  of x to y.  It  might  be
evaluated as if it expanded to this instead:

y = x + (x-1);

because the compiler notices that the overall effect on the value of x is zero.



The arithmetic is done exactly as if the full addition expression had been used, for
example x=x+1, and the usual arithmetic conversions apply.

Exercise     2.16. Given the following variable definitions

int i1, i2;
float f1, f2;

a. How would you find the remainder when i1 is divided by i2?
b. How would you find the remainder when i1 is divided by the value of f1,

treating f1 as an integer?
c. What can  you predict  about  the sign of  the remainders  calculated  in  the

previous two questions?
d. What meanings can the - operator have?
e. How would you turn off all but the low-order four bits in i1?
f. How would you turn on all the low-order four bits in i1?
g. How would you turn off only the low-order four bits in i1?
h. How  would  you  put  into i1 the  low-order  8 bits  in i2,  but  swapping  the

significance of the lowest four with the next
i. What  is  wrong  with  the  following  expression?  

f2 = ++f1 + ++f1;

2.8.3. Precedence and grouping
After looking at the operators we have to consider the way that they work together.
For things like addition it may not seem important; it hardly matters whether

a + b + c

is done as

(a + b) + c

or

a + (b + c)

does it? Well, yes in fact it does. If a+b would overflow and c held a value very close
to -b, then the second grouping might give the correct answer where the first would
cause  undefined  behaviour.  The  problem  is  much  more  obvious  with  integer
division:

a/b/c

gives very different results when grouped as

a/(b/c)

or

(a/b)/c



If you don't believe that, try it with a=10, b=2, c=3. The first gives 10/(2/3); 2/3 in
integer division gives 0, so we get 10/0 which immediately overflows. The second
grouping gives (10/2), obviously 5, which divided by 3 gives 1.

The grouping of operators like that is known as associativity. The other question is
one of  precedence, where some operators have a higher priority than others and
force evaluation of sub-expressions involving them to be performed before those
with  lower  precedence  operators.  This  is  almost  universal  practice  in  high-level
languages, so we 'know' that

a + b * c + d

groups as

a + (b * c) + d

indicating that multiplication has higher precedence than addition.

The large set of operators  in C gives rise to 15 levels of precedence! Only very
boring people bother to remember them all. The complete list is given in Table  2 .9,
which indicates both precedence and associativity.  Not all  of  the operators have
been mentioned yet.  Beware of the use of the same symbol for both unary and
binary operators: the table indicates which are which.

Operator
Directio

n
Notes

() [] -> .
left to 
right

1

! ~ ++ -- - + (cast) * & sizeof
right to 
left

all 
unary

* / %
left to 
right

binary

+ -
left to 
right

binary

<< >>
left to 
right

binary

< <= > >=
left to 
right

binary

== !=
left to 
right

binary

&
left to 
right

binary



Operator
Directio

n
Notes

^
left to 
right

binary

|
left to 
right

binary

&&
left to 
right

binary

||
left to 
right

binary

?:
right to 
left

2

= += and all combined assignment
right to 
left

binary

,
left to 
right

binary

1. Parentheses are for expression grouping, not function 
call.

2. This is unusual. See Section     3.4.1.

Table 2.9 - Operator precedence and associativity

The  question  is,  what  can  you  do  with  that  information,  now  that  it's  there?
Obviously it's important to be able to work out both how to write expressions that
evaluate in the proper order, and also how to read other people's. The technique is
this: first, identify the unary operators and the operands that they refer to. This isn't
such a difficult task but it takes some practice, especially when you discover that
operators  such as unary * can be applied an arbitrary number of  times to their
operands; this expression

a*****b

means a multiplied  by  something,  where  the  something  is  an  expression
involving b and several unary * operators.

It's not too difficult to work out which are the unary operators; here are the rules.

1. ++ and - are always unary operators.
2. The operator  immediately to  the right of  an operand is  a binary operator

unless (1) applies, when the operator to its right is binary.
3. All operators to the left of an operand are unary unless (2) applies.



Because the unary operators have very high precedence, you can work out what
they do before worrying about the other operators. One thing to watch out for is the
way that ++ and -- can be before or after their operands; the expression

a + -b++ + c

has two unary operators applied to b. The unary operators all associate right to left,
so although the - comes first when you read the expression, it really parenthesizes
(for clarity) like this:

a + -(b++) + c

The  case  is  a  little  clearer  if  the  prefix,  rather  than  the  postfix,  form  of  the
increment/decrement operators is being used. Again the order is right to left, but at
least the operators come all in a row.

After  sorting  out  what  to  do  with  the  unary  operators,  it's  easy  to  read  the
expression from left to right. Every time you see a binary operator, remember it.
Look to the right: if the next binary operator is of a lower precedence, then the
operator  you  just  remembered  is  part  of  a  subexpression  to  evaluate  before
anything  else  is  seen.  If  the  next  operator  is  of  the  same  precedence,  keep
repeating the procedure as long as equal precedence operators are seen. When you
eventually find a lower precedence operator, evaluate the subexpression on the left
according to the associativity rules. If a higher precedence operator is found on the
right, forget the previous stuff: the operand to the left of the higher precedence
operator is part  of a subexpression separate from anything on the left so far.  It
belongs to the new operator instead.

If that lot isn't clear don't worry. A lot of C programmers have trouble with this area
and eventually learn to parenthesize these expressions 'by eye', without ever using
formal rules.

What  does matter  is  what  happens  when  you  have  fully  parenthesized  these
expressions. Remember the 'usual arithmetic conversions'? They explained how you
could predict the type of an expression from the operands involved. Now, even if
you  mix  all  sorts  of  types  in  a  complicated  expression,  the  types  of  the
subexpressions  are  determined only  from the  the  types  of  the  operands  in  the
subexpression. Look at this.



#include <stdio.h>
#include <stdlib.h>
main(){
      int i,j;
      float f;
      i = 5; j = 2;
      f = 3.0;
      f = f + j / i;
      printf("value of f is %f\n", f);
      exit(EXIT_SUCCESS);
}

Example 2.15

The value printed is 3.0000, not 5.0000-which might surprise some, who thought
that  because  a  float was  involved  the  whole  statement  involving  the  division
would be done in that real type.

Of course, the division operator had only int types on either side, so the arithmetic
was done as integer division and resulted in zero. The addition had a float and an
int on either side, so the conversions meant that the int was converted to float
for the arithmetic, and that was the correct type for the assignment, so there were
no further conversions.

The  previous  section  on  casts  showed  one  way  of  changing  the  type  of  an
expression from its natural one to the one that you want. Be careful though:

(float)(j/i)

would  still  use  integer  division,  then  convert  the  result  to  float.  To  keep  the
remainder, you should use

(float)j/i

which would force real division to be used.

2.8.4. Parentheses
C allows you to override the normal effects of precedence and associativity by the
use of parentheses as the examples have illustrated. In Old C, the parentheses had
no further meaning, and in particular did not guarantee anything about the order of
evaluation in expressions like these:

int a, b, c;
a+b+c;
(a+b)+c;
a+(b+c);

You used to need to use explicit temporary variables to get a particular order of
evaluation-something that matters if you know that there are risks of overflow in a
particular expression, but by forcing the evaluation to be in a certain order you can
avoid it.



Standard C  says  that  evaluation  must be  done  in  the  order  indicated  by  the
precedence and grouping of the expression, unless the compiler can tell that the
result will not be affected by any regrouping it might do for optimization reasons.

So,  the  expression a = 10+a+b+5;  cannot  be  rewritten  by  the  compiler  as a =
15+a+b; unless it can be guaranteed that the resulting value of a will be the same
for all combinations of initial values of a and b. That would be true if the variables
were both unsigned integral types, or if they were signed integral types but in that
particular implementation overflow did not cause a run-time exception and overflow
was reversible.

2.8.5. Side Effects
To repeat and expand the warning given for the increment operators: it is unsafe to
use the same variable more than once in an expression if evaluating the expression
changes the variable and the new value could affect the result of the expression.
This is because the change(s) may be 'saved up' and only applied at the end of the
statement. So f = f+1; is safe even though f appears twice in a value-changing
expression, f++; is also safe, but f = f++; is unsafe.

The  problem can  be  caused  by  using  an  assignment,  use  of  the  increment  or
decrement operators, or by calling a function that changes the value of an external
variable that is also used in the expression.  These are generally known as 'side
effects'.  C makes almost  no promise that side effects will  occur in  a predictable
order within a single expression. (The discussion of 'sequence points' in  Chapter     8
will be of interest if you care about this.)

2.9. Constants

2.9.1. Integer constants
The normal integral constants are obvious: things like 1,  1034 and so on. You can
put l or L at the end of an integer constant to force it to be long. To make the
constant unsigned, one of u or U can be used to do the job.

Integer constants can be written in hexadecimal by preceding the constant with 0x
or 0X and using the upper or lower case letters a, b, c, d, e, f in the usual way.

Be careful about octal constants. They are indicated by starting the number with 0
and only using the digits 0, 1, 2, 3, 4, 5, 6, 7. It is easy to write 015 by accident, or
out of habit, and not to realize that it is not in decimal. The mistake is most common
with beginners, because experienced C programmers already carry the scars.

The Standard has now invented a new way of working out what type an integer
constant is. In the old days, if the constant was too big for an int, it got promoted
to a long (without warning). Now, the rule is that a plain decimal constant will be
fitted into the first in this list

int   long   unsigned long



that can hold the value.

Plain octal or hexadecimal constants will use this list

int   unsigned int   long   unsigned long

If the constant is suffixed by u or U:

unsigned int   unsigned long

If it is suffixed by l or L:

long   unsigned long

and finally, if it suffixed by both u or U and l or L, it can only be an unsigned long.

All that was done to try to give you 'what you meant'; what it does mean is that it is
hard to work out exactly what the type of a constant expression is if you don't know
something  about  the  hardware.  Hopefully,  good  compilers  will  warn  when  a
constant is promoted up to another length and the U or L etc. is not specified.

A nasty bug hides here:

printf("value of 32768 is %d\n", 32768);

On a 16-bit two's complement machine,  32768 will  be a  long by the rules given
above. But printf is only expecting an int as an argument (the %d indicates that).
The  type  of  the  argument  is  just  wrong.  For  the  ultimate  in  safety-conscious
programming, you should cast such cases to the right type:

printf("value of 32768 is %d\n", (int)32768);

It might interest you to note that there are no negative constants; writing -23 is an
expression involving a positive constant and an operator.

Character constants actually have type int (for historical reasons) and are written
by placing a sequence of characters between single quote marks:

'a'
'b'
'like this'

Wide character constants are written just as above, but prefixed with L:

L'a'
L'b'
L'like this'

Regrettably it  is valid to have more than one character in the sequence, giving a
machine-dependent result. Single characters are the best from the portability point
of  view,  resulting  in  an  ordinary  integer  constant  whose  value  is  the  machine
representation of the single character. The introduction of extended characters may
cause  you  to  stumble  over  this  by  accident;  if '<a>' is  a  multibyte  character
(encoded with a shift-in shift-out around it) then  '<a>' will  be a plain character



constant,  but containing several  characters,  just  like the more obvious  'abcde'.
This is bound to lead to trouble in the future; let's hope that compilers will warn
about it.

To ease the way of representing some special characters that would otherwise be
hard to get into a character constant (or hard to read; does ' ' contain a space or a
tab?), there is what is called an escape sequence which can be used instead. Table
 2 .10 shows the escape sequences defined in the Standard.

Sequen
ce

Represent
s

\a
audible 
alarm

\b backspace

\f form feed

\n newline

\r
carriage 
return

\t tab

\v vertical tab

\\ backslash

\' quote

\"
double 
quote

\?
question 
mark

Table 2.10 - C escape sequences

It is also possible to use numeric escape sequences to specify a character in terms
of the internal  value used to represent  it.  A sequence of  either \ooo or \xhhhh,
where the ooo is up to three octal digits and hhhh is any number of hexadecimal
digits respectively. A common version of it is  '\033', which is used by those who
know that on an ASCII based machine, octal 33 is the ESC (escape) code. Beware
that the hexadecimal version will absorb any number of valid following hexadecimal
digits; if you want a string containing the character whose value is hexadecimal ff
followed by a letter f, then the safe way to do it is to use the string joining feature:

"\xff" "f"

The string



"\xfff"

only contains one character, with all three of the fs eaten up in the hexadecimal
sequence.

Some of the escape sequences aren't too obvious, so a brief explanation is needed.
To get a single quote as a character constant you type '\'', to get a question mark
you may have to use '\?'; not that it matters in that example, but to get two of
them in there  you  can't  use '??',  because  the sequence ??' is  a  trigraph!  You
would have to use '\?\?'. The escape \" is only necessary in strings, which will
come later.

There  are  two  distinct  purposes  behind  the  escape  sequences.  It's  obviously
necessary to be able to represent characters such as single quote and backslash
unambiguously: that is one purpose. The second purpose applies to the following
sequences which control the motions of a printing device when they are sent to it,
as follows:

\a

Ring the bell if there is one. Do not move.

\b

Backspace.

\f

Go to the first position on the 'next page', whatever that may mean for the 
output device.

\n

Go to the start of the next line.

\r

Go back to the start of the current line.

\t

Go to the next horizontal tab position.

\v

Go to the start of the line at the next vertical tab position.

For \b,  \t,  \v,  if  there  is  no  such  position,  the  behaviour  is  unspecified.  The
Standard carefully avoids mentioning the physical directions of movement of the
output device which are not necessarily the top to bottom, left to right movements
common in Western cultural environments.



It is guaranteed that each escape sequence has a unique integral value which can
be stored in a char.

2.9.2. Real constants
These follow the usual format:

1.0
2.
.1
2.634
.125
2.e5
2.e+5
.125e-3
2.5e5
3.1E-6

and so on. For readability, even if part of the number is zero, it is a good idea to
show it:

1.0
0.1

The exponent part shows the number of powers of ten that the rest of the number
should be raised to, so

3.0e3

is equivalent in value to the integer constant

3000

As you can see, the e can also be E. These constants all have type double unless
they are suffixed with f or F to mean float or l or L to mean long double.

For completeness, here is the formal description of a real constant:

A real constant is one of:

 A fractional constant followed by an optional exponent.

 A digit sequence followed by an exponent.

In either case followed by an optional one of f, l, F, L, where:

 A fractional constant is one of: 

 An optional  digit sequence followed by a decimal point followed by a
digit sequence.

 A digit sequence followed by a decimal point.

 An exponent is one of 

 e or E followed by an optional + or - followed by a digit sequence.
 A digit sequence is an arbitrary combination of one or more digits.



2.10. Summary
This has been a lengthy, and perhaps disconcerting chapter.

The alphabet of C, although of relevance, is not normally a day-to-day consideration
of practising programmers, so it has been discussed but can now be largely ignored.

Much the same can be said regarding keywords and identifiers, since the topic is not
complicated and simply becomes committed to memory.

The declaration of variables is rarely a problem, although it is worth re-emphasizing
the distinction between a declaration and a definition. If that still remains unclear,
you might find it of benefit to go back and re-read the description.

Beyond any question, the real complexity lies in what happens when the integral
promotions  and  the  arithmetic  conversions  occur.  For  beginners,  it  is  often
worthwhile to remember that here is a difficult and arduous piece of terrain. Nothing
else in the language requires so much attention or is so important to the production
of correct, reliable programs. Beginners should not try to remember it all, but to go
on now and to gain confidence with the rest of the language. After two or three
months' practice at  using the easier parts of the language, the time really does
come when you can no longer afford to ignore Section     2.8.

Many  highly  experienced  C programmers  never  bother  to  learn  the  different
precedences of operators,  except for a few important cases.  A precedence table
pinned above your desk, for easy reference, is a valuable tool.

The  Standard  has  substantially  affected  parts  of  the  language described in  this
chapter.  In  particular,  the  changes  to  the  conversions  and  the  change  from
'unsignedness preserving' to 'value preserving' rules of arithmetic may cause some
surprises to experienced C programmers. Even they have some real re-learning to
do.

2.11. Exercises
Exercise        2.17. First, fully parenthesize the following expressions according to the
precedence and associativity rules. Then, replacing the variables and constants with
the appropriate type names, show how the type of the expression is derived by
replacing the highest precedence expressions with its resulting type.

The variables are:

char c;
int i;
unsigned u;
float f;

For example: i = u+1; parenthesizes as (i = (u + 1));

The types are

(int = (unsigned + int));



then

(int = (unsigned)); /* usual arithmetic conversions */

then

(int); /* assignment */
c = u * f + 2.6L;
u += --f / u % 3;
i <<= u * - ++f;
u = i + 3 + 4 + 3.1;
u = 3.1 + i + 3 + 4;
c = (i << - --f) & 0xf;



Chapter 3: Control of Flow and Logical 
Expressions

3.1. The Task ahead
In this chapter we look at the various ways that the control of flow statements can
be used in a C program, including some statements that haven't been introduced so
far. They are almost always used in conjunction with logical expressions to select
the next action. Examples of  logical expressions that have been seen already are
some simple ones used in  if or  while statements. As you might have expected,
you can use expressions more complicated than simple comparison (>, <=, == etc.);
what may surprise you is the type of the result.

3.1.1. Logical expressions and Relational Operators
All  of  the  examples  we  have  used  so  far  have  deliberately  avoided  using
complicated logical  expressions in the control  of  flow statements. We have seen
expressions like this

if(a != 100){...

and presumably you have formed the idea that C supports the concept of 'true' and
'false' for these relationships. In a way, it does, but in a way that differs from what is
often expected.

All  of  the  relational  operators  shown in  Table   3  .11 are  used  to  compare  two
operands in the way indicated. When the operands are arithmetic types, the usual
arithmetic conversions are applied to them.

Operat
or

Operation

< less than

<=
less than or equal 
to

> greater than

>=
greater than or 
equal to

== equal to

!= not equal to

Table 3.11 - Relational operators

Be extra careful of the test for equality,  ==. As we have already pointed out, it is
often valid to use assignment = where you might have meant == and C can't tell you



about your mistake. The results are normally different and it takes a long time for
beginners to get used to using == and =.

Now, that usefully introduces the question 'why?'. Why are both valid? The answer is
simple. C's concept of 'true' and 'false' boils down to simply 'non-zero' and 'zero',
respectively. Where we have seen expressions involving relational operators used to
control  do and  if statements, we have just been using expressions with numeric
results. If the expression evaluates to non-zero, then the result is effectively true. If
the  reverse  is  the  case,  then  of  course  the  result  is  false.  Anywhere  that  the
relational operators appear, so may any other expression.

The relational operators work by comparing their operands and giving zero for false
and (remember this) one for true. The result is of type int. This example shows how
they work.

#include <stdio.h>
#include <stdlib.h>
main(){
    int i;
    i = -10;
    while(i <= 5){
            printf("value of i is %d, ", i);
            printf("i == 0 = %d, ", i==0 );
            printf("i > -5 = %d\n", i > -5);
            i++;
    }
    exit(EXIT_SUCCESS);
}

Example 3.16

Which produces this on its standard output:

value of i is -10, i == 0 = 0, i > -5 = 0
value of i is -9, i == 0 = 0, i > -5 = 0
value of i is -8, i == 0 = 0, i > -5 = 0
value of i is -7, i == 0 = 0, i > -5 = 0
value of i is -6, i == 0 = 0, i > -5 = 0
value of i is -5, i == 0 = 0, i > -5 = 0
value of i is -4, i == 0 = 0, i > -5 = 1
value of i is -3, i == 0 = 0, i > -5 = 1
value of i is -2, i == 0 = 0, i > -5 = 1
value of i is -1, i == 0 = 0, i > -5 = 1
value of i is 0, i == 0 = 1, i > -5 = 1
value of i is 1, i == 0 = 0, i > -5 = 1
value of i is 2, i == 0 = 0, i > -5 = 1
value of i is 3, i == 0 = 0, i > -5 = 1
value of i is 4, i == 0 = 0, i > -5 = 1
value of i is 5, i == 0 = 0, i > -5 = 1

In this probably mistaken piece of code, what do you think happens?



if(a = b)...

The value of  b is assigned to  a.  As you know, the result has the type of a and
whatever value was assigned to  a.  The if  will  execute the next statement if  the
value assigned is not zero. If zero is assigned, the next statement is ignored. So now
you understand  what  happens  if  you  confuse  the  assignment  with  the  equality
operator!

In all of the statements that test the value of an expression, the if, while, do, and
for statements, the expression is simply tested to see if its value is zero or not.

We will look at each one in turn.

3.2. Control of flow

3.2.1. The if statement
The if statement has two forms:

if(expression) statement
if(expression) statement1
else statement2

In  the  first  form,  if  (and  only  if)  the  expression is  non-zero,  the  statement is
executed. If the  expression is zero, the  statement is ignored. Remember that the
statement can be compound; that is the way to put several statements under the
control of a single if.

The second form is like the first except that if the statement shown as statement1 is
selected then statement2 will not be, and vice versa.

Either  form  is  considered  to  be  a  single  statement  in  the  syntax  of C,  so  the
following is completely legal.

if(expression)
    if(expression) statement

The first if (expression) is followed by a properly formed, complete if statement.
Since that is legally a statement, the first if can be considered to read

if(expression) statement

and is therefore itself properly formed. The argument can be extended as far as you
like,  but  it's  a  bad  habit  to  get  into.  It  is  better  style  to  make  the  statement
compound  even  if  it  isn't  necessary.  That  makes  it  a  lot  easier  to  add  extra
statements if they are needed and generally improves readability.

The form involving else works the same way, so we can also write this.

if(expression)
  if(expression)
    statement



  else
    statement

As  Chapter     1 has said already,  this is now ambiguous.  It  is not clear,  except as
indicated by the indentation, which of the  ifs is responsible for the  else.  If  we
follow the rules that the previous example suggests, then the second if is followed
by a statement, and is therefore itself a statement, so the else belongs to the first
if.

That is not the way that C views it. The rule is that an else belongs to the first if
above that hasn't already got an  else. In the example we're discussing, the else
goes with the second if.

To prevent any unwanted association between an else and an if just above it, the
if can be hidden away by using a compound statement. To repeat the example in
Chapter     1, here it is.

if(expression){
    if(expression)
            statement
}else
    statement

Putting in all the compound statement brackets, it becomes this:

if(expression){
    if(expression){
        statement
    }
}else{
    statement
}

If you happen not to like the placing of the brackets, it is up to you to put them
where you think they look better; just be consistent about it. You probably need to
know that this a subject on which feelings run deep.

3.2.2. The while and do statements
The while is simple:

while(expression)
    statement

The statement is only executed if the expression is non-zero. After every execution
of the statement, the expression is evaluated again and the process repeats if it is
non-zero. What could be plainer than that? The only point to watch out for is that
the statement may never be executed, and that if nothing in the statement affects
the value of the expression then the while will either do nothing or loop for ever,
depending on the initial value of the expression.



It is occasionally desirable to guarantee at least one execution of the statement
following the while,  so an alternative form exists known as the do statement. It
looks like this:

do
    statement
while(expression);

and you should pay close attention to that semicolon-it is not optional! The effect is
that the statement part is executed before the controlling expression is evaluated,
so this guarantees at least one trip around the loop. It was an unfortunate decision
to use the keyword while for both purposes, but it doesn't seem to cause too many
problems in practice.

If you feel the urge to use a do, think carefully. It is undoubtedly essential in certain
cases, but experience has shown that the use of do statements is often associated
with poorly constructed code. Not every time, obviously, but as a general rule you
should stop and ask yourself if  you have made the right choice. Their use often
indicates a hangover of thinking methods learnt with other languages, or just sloppy
design. When you do convince yourself that nothing else will give you just what is
wanted, then go ahead - be daring-use it.

3.2.2.1. Handy hints
A very common trick in C programs is to use the result of an assignment to control
while and do loops. It is so commonplace that, even if you look at it the first time
and blench, you've got no alternative but to learn it. It falls into the category of
'idiomatic' C and eventually becomes second nature to anybody who really uses the
language. Here is the most common example of all:

#include <stdio.h>
#include <stdlib.h>
main(){
    int input_c;
    /* The Classic Bit */
    while( (input_c = getchar()) != EOF){
            printf("%c was read\n", input_c);
    }
    exit(EXIT_SUCCESS);
}

Example 3.17

The clever bit is the expression assigning to  input_c. It is assigned to, compared
with  EOF (End Of File), and used to control the loop all in one go. Embedding the
assignment like that is a handy embellishment. Admittedly it only saves one line of
code, but the benefit in terms of readability (once you have got used to seeing it) is
quite large. Learn where the parentheses are, too. They're necessary for precedence
reasons-work out why!



Note that input_c is an int. This is because getchar has to be able to return not
only every possible value of a char, but also an extra value, EOF. To do that, a type
longer than a char is necessary.

Both  the  while and  the  do statements  are  themselves  syntactically  a  single
statement, just like an  if statement. They occur anywhere that any other single
statement is permitted. If you want them to control several statements, then you
will have to use a compound statement, as the examples of if illustrated.

3.2.3. The for statement
A very common feature in programs is loops that are controlled by variables used as
a counter. The counter doesn't always have to count consecutive values, but the
usual arrangement is for it to be initialized outside the loop, checked every time
around the loop to see when to finish and updated each time around the loop. There
are three important places, then, where the loop control is concentrated: initialize,
check and update. This example shows them.

#include <stdio.h>
#include <stdlib.h>
main(){
      int i;
      /* initialise */
      i = 0;
      /* check */
      while(i <= 10){
              printf("%d\n", i);
              /* update */
              i++;
      }
      exit(EXIT_SUCCESS);
}

Example 3.18

As you will  have noticed, the initialization and check parts of the loop are close
together  and  their  location  is  obvious  because  of  the  presence  of  the  while
keyword. What is harder to spot is the place where the update occurs, especially if
the value of the controlling variable is used within the loop. In that case, which is by
far the most common, the update has to be at the very end of the loop: far away
from the initialize and check. Readability suffers because it is hard to work out how
the loop is going to perform unless you read the whole body of the loop carefully.
What is needed is some way of bringing the initialize, check and update parts into
one place so that they can be read quickly and conveniently. That is exactly what
the for statement is designed to do. Here it is.

for (initialize; check; update) statement

The initialize part is an expression; nearly always an assignment expression which is
used to initialize the control variable. After the initialization, the check expression is



evaluated: if it is non-zero, the statement is executed, followed by evaluation of the
update  expression  which  generally  increments  the  control  variable,  then  the
sequence restarts at the check. The loop terminates as soon as the check evaluates
to zero.

There are two important things to realize about that last description: one, that each
of  the  three  parts  of  the  for  statement  between  the  parentheses  are  just
expressions;  two,  that  the  description  has  carefully  explained  what  they  are
intended  to  be  used  for  without  proscribing  alternative  uses-that  was  done
deliberately.  You  can  use  the  expressions  to  do  whatever  you  like,  but  at  the
expense of readability if they aren't used for their intended purpose.

Here is a program that does the same thing twice, the first time using a while loop,
the second time with a for. The use of the increment operator is exactly the sort of
use that you will see in everyday practice.

#include <stdio.h>
#include <stdlib.h>
main(){
      int i;
      i = 0;
      while(i <= 10){
              printf("%d\n", i);
              i++;
      }
      /* the same done using ``for'' */
      for(i = 0; i <= 10; i++){
              printf("%d\n", i);
      }
      exit(EXIT_SUCCESS);
}

Example 3.19

There isn't any difference betweeen the two, except that in this case the for loop is
more convenient and maintainable than the  while statement. You should always
use the for when it's appropriate; when a loop is being controlled by some sort of
counter. The while is more at home when an indeterminate number of cycles of the
loop are part of the problem. As always, it needs a degree of judgement on behalf of
the author of the program; an understanding of form, style, elegance and the poetry
of a well written program. There is no evidence that the software business suffers
from a surfeit of those qualities, so feel free to exercise them if you are able.

Any of  the initialize, check and update expressions in the for statement can be
omitted,  although  the  semicolons  must  stay.  This  can  happen  if  the  counter  is
already initialized, or gets updated in the body of the loop. If the check expression is
omitted, it is assumed to result in a 'true' value and the loop never terminates. A
common way of writing never-ending loops is either

for(;;)



or

while(1)

and both can be seen in existing programs.

3.2.4. A brief pause 
The control  of flow statements that we've just seen are quite adequate to write
programs of any degree of complexity. They lie at the core of C and even a quick
reading of everyday C programs will illustrate their importance, both in the provision
of essential functionality and in the structure that they emphasize. The remaining
statements are used to give programmers finer control or to make it easier to deal
with exceptional conditions. Only the switch statement is enough of a heavyweight
to need no justification for its use; yes, it can be replaced with lots of  ifs, but it
adds a lot of readability. The others, break,  continue and goto, should be treated
like  the  spices  in  a  delicate  sauce.  Used  carefully  they  can  turn  something
commonplace into a treat, but a heavy hand will drown the flavour of everything
else.

3.2.5. The switch statement
This is not an essential part of C. You could do without it, but the language would
have become significantly less expressive and pleasant to use.

It is used to select one of a number of alternative actions depending on the value of
an expression, and nearly always makes use of another of the lesser statements:
the break. It looks like this.

switch (expression){
case const1:    statements
case const2:    statements
default:        statements
}

The  expression is evaluated and its value is compared with all of the  const1 etc.
expressions, which must all evaluate to different constant values (strictly they are
integral  constant expressions, see  Chapter     6 and below). If  any of them has the
same  value  as  the  expression then  the  statement  following  the  case label  is
selected for execution. If the default is present, it will be selected when there is no
matching value found. If  there is no  default and no matching value, the entire
switch statement  will  do  nothing  and  execution  will  continue  at  the  following
statement.

One curious feature is that the cases are not exclusive, as this example shows.



#include <stdio.h>
#include <stdlib.h>
main(){
      int i;
      for(i = 0; i <= 10; i++){
              switch(i){
                      case 1:
                      case 2:
                              printf("1 or 2\n");
                      case 7:
                              printf("7\n");
                      default:
                              printf("default\n");
              }
      }
      exit(EXIT_SUCCESS);
}

Example 3.20

The loop cycles with i having values 0-10. A value of 1 or 2 will cause the printing of
the message 1 or 2 by selecting the first of the printf statements. What you might
not expect is the way that the remaining messages would also appear! It's because
the switch only selects one entry point to the body of the statement; after starting
at a given point all of the following statements are also executed. The  case and
default labels  simply  allow  you  to  indicate  which of  the  statements  is  to  be
selected. When i has the value of 7, only the last two messages will be printed. Any
value other than 1, 2, or 7 will find only the last message.

The labels can occur in any order, but no two values may be the same and you are
allowed either one or no default (which doesn't have to be the last label). Several
labels can be put in front of one statement and several statements can be put after
one label.

The expression controlling the  switch can be of any of the integral types. Old C
used to insist on only int here, and some compilers would forcibly truncate longer
types, giving rise on rare occasions to some very obscure bugs.

3.2.5.1. The major restriction
The biggest problem with the switch statement is that it doesn't allow you to select
mutually exclusive courses of  action;  once the body of  the statement has been
entered any subsequent statements within the body will all be executed. What is
needed is  the  break statement.  Here is  the previous example,  but amended to
make sure that the messages printed come out in a more sensible order. The break
statements  cause  execution  to  leave  the  switch statement  immediately  and
prevent any further statements in the body of the switch from being executed.



#include <stdio.h>
#include <stdlib.h>
main(){
      int i;
      for(i = 0; i <= 10; i++){
              switch(i){
                      case 1:
                      case 2:
                              printf("1 or 2\n");
                              break;
                      case 7:
                              printf("7\n");
                              break;
                      default:
                              printf("default\n");
              }
      }
      exit(EXIT_SUCCESS);
}

Example 3.21

The break has further uses. Its own section follows soon.

3.2.5.2. Integral Constant Expression
Although  Chapter     6 deals with constant expressions, it is worth looking briefly at
what an integral constant expression is, since that is what must follow the  case
labels in a switch statement. Loosely speaking, it is any expression that does not
involve any value-changing operation (like increment or assignment), function calls
or comma operators. The operands in the expression must all be integer constants,
character constants, enumeration constants,  sizeof epressions and floating-point
constants that are the immediate operands of casts. Any cast operators must result
in integral types.

Much what you would expect, really.

3.2.6. The break statement
This is a simple statement. It only makes sense if it occurs in the body of a switch,
do,  while or  for statement. When it is executed the control of flow jumps to the
statement immediately following the body of the statement containing the  break.
Its use is widespread in switch statements, where it is more or less essential to get
the control that most people want.

The use of the break within loops is of dubious legitimacy. It has its moments, but is
really only justifiable when exceptional circumstances have happened and the loop
has to be abandoned. It would be nice if more than one loop could be abandoned
with a single break but that isn't how it works. Here is an example.



#include <stdio.h>
#include <stdlib.h>
main(){
      int i;
      for(i = 0; i < 10000; i++){
              if(getchar() == 's')
                      break;
              printf("%d\n", i);
      }
      exit(EXIT_SUCCESS);
}

Example 3.22

It reads a single character from the program's input before printing the next in a
sequence of numbers. If an 's' is typed, the break causes an exit from the loop.

If you want to exit from more than one level of loop, the break is the wrong thing to
use.  The  goto is  the  only  easy  way,  but  since  it  can't  be  mentioned  in  polite
company, we'll leave it till last.

3.2.7. The continue statement
This statement has only a limited number of uses. The rules for its use are the same
as  for  break,  with  the  exception  that  it  doesn't  apply  to  switch statements.
Executing a continue starts the next iteration of the smallest enclosing do, while or
for statement immediately. The use of continue is largely restricted to the top of
loops, where a decision has to be made whether or not to execute the rest of the
body of  the loop.  In  this  example  it  ensures  that  division by zero  (which  gives
undefined behaviour) doesn't happen.

#include <stdio.h>
#include <stdlib.h>
main(){
      int i;
      for(i = -10; i < 10; i++){
              if(i == 0)
                      continue;
              printf("%f\n", 15.0/i);
              /*
               * Lots of other statements .....
               */
      }
      exit(EXIT_SUCCESS);
}

Example 3.23

You  could  take  a  puritanical  stance  and  argue  that,  instead  of  a  conditional
continue,,  the  body  of  the  loop  should  be  made  conditional  instead-but  you
wouldn't  have  many  supporters.  Most  C  programmers  would  rather  have  the



continue than the extra level of indentation, particularly if the body of the loop is
large.

Of course the  continue can be used in other parts of a loop, too, where it may
occasionally  help  to  simplify  the  logic  of  the  code  and  improve  readability.  It
deserves to be used sparingly.

Do remember that continue has no special meaning to a switch statement, where
break does have. Inside a  switch,  continue is only valid if  there is a loop that
encloses the switch, in which case the next iteration of the loop will be started.

There is an important difference between loops written with  while and  for. In a
while, a continue will go immediately to the test of the controlling expression. The
same thing in a for will do two things: first the update expression is evaluated, then
the controlling expresion is evaluated.

3.2.8. goto and labels
Everybody knows that the goto statement is a 'bad thing'. Used without care it is a
great way of making programs hard to follow and of obscuring any structure in their
flow.  Dijkstra  wrote  a  famous paper  in  1968 called 'Goto  Statement Considered
Harmful', which everybody refers to and almost nobody has read.

What's especially annoying is that there are times when it is the most appropriate
thing to use in the circumstances! In C, it is used to escape from multiple nested
loops, or to go to an error handling exit at the end of a function. You will need a
label when you use a goto; this example shows both.

goto L1;
/* whatever you like here */
L1: /* anything else */

A label is an identifier followed by a colon. Labels have their own 'name space' so
they can't  clash with the names of variables or functions. The name space only
exists  for  the  function  containing  the  label,  so  label  names  can  be  re-used  in
different  functions.  The  label  can  be  used  before  it  is  declared,  too,  simply  by
mentioning it in a goto statement.

Labels must be part of a full statement, even if it's an empty one. This usually only
matters when you're trying to put a label at the end of a compound statement-like
this.

label_at_end: ; /* empty statement */
}

The goto works in an obvious way, jumping to the labelled statements. Because the
name of the label is only visible inside its own function, you can't jump from one
function to another one.



It's hard to give rigid rules about the use of gotos but, as with the do, continue and
the  break (except  in  switch statements),  over-use  should  be  avoided.  Think
carefully every time you feel like using one, and convince yourself that the structure
of the program demands it. More than one goto every 3-5 functions is a symptom
that should be viewed with deep suspicion.

Summary
Now we've seen all of the control of flow statements and examples of their use.
Some should be used whenever possible, some are not for use line by line but for
special purposes where their particular job is called for. It is possible to write elegant
and  beautiful  programs  in  C  if  you  are  prepared  to  take  the  extra  bit  of  care
necessary; the specialized control of flow statements give you the chance to add
the extra polish that some other languages lack.

All that remains to be done to complete the picture of flow of control in C is to finish
off the logical operators.

3.3. More logical expressions
This chapter has already shown how C makes no distinction between 'logical' and
other values. The relational operators all give a result of 0 or 1 for false and true,
respectively. Whenever the control of flow statements demand it, an expression is
evaluated to determine what  to  do next.  A 0 means 'don't  do it';  anything else
means 'do'. It means that the fragments below are all quite reasonable.

while (a<b)...
while (a)....
if ( (c=getchar()) != EOF )...

No experienced C programmer would be surprised by any of them. The second of
them, while (a), is a common abbreviation for while (a != 0), as you should be
able to work out.

What we need now is a way of writing more complicated expressions involving 
these logical true and false values. So far, it has to be done like this, when we 
wanted to say if(a<b AND c<d)

if (a < b){
      if (c < d)...
}

It will not be a source of great amazement to find that there is a way of expressing
such a statement.

There are three operators involved in this sort of operation: the logical AND &&, the
logical OR || and the NOT !. The last is unary, the other two are binary. All of them
take expressions as their operands and give as results either 1 or 0. The && gives 1
only  when  both  of  its  operands  are  non-zero.  The || gives 0 only  when  both



operands are zero.  The ! gives 0 if  its operand is non-zero and vice versa.  Easy
really. The results are of type int for all three.

Do not confuse & and | (the bitwise operators) with their logical counterparts. They
are not the same.

One  special  feature  of  the  logical  operators,  found  in  very  few  of  the  other
operators,  is  their  effect  on  the  sequence  of  evaluation  of  an  expression.  They
evaluate left  to  right (after precedence is  taken into account)  and every logical
expression ceases evaluation as soon as the overall result can be determined. For
example, a sequence of  ||s can stop as soon as one operand is found to be non-
zero. This next fragment guarantees never to divide by zero.

if (a!=0 && b/a > 5)...
/* alternative */
if (a && b/a > 5)

In either version  b/a will  only be evaluated if  a is non-zero.  If  a were zero,  the
overall  result  would already have been decided,  so the evaluation must stop to
conform with C's rules for the logical operators.

The unary NOT is simple. It isn't all that common to see it in use largely because
most expresssions can be rearranged to do without it. The examples show how.

if (!a)...
/* alternative */
if (a==0)...
if(!(a>b))
/* alternative */
if(a <= b)
if (!(a>b && c<d))...
/* alternative */
if (a<=b || c>=d)...

Each of the examples and the alternatives serve to show ways of avoiding (or at
least doing without) the ! operator. In fact, it's most useful as an aid to readability. If
the problem that you are solving has a natural logical relationship inherent in it-say
the  (b*b-4*a*c) > 0 found in quadratic equation solving-then it probably reads
better if you write if( !((b*b-4*a*c) > 0)) than if( (b*b-4*a*c) <= 0)-but it's
up to you. Pick the one that feels right.

Most expressions using these logical operators work out just about right in terms of
the precedence rules, but you can get a few nasty surprises. If you look back to the
precedence  tables,  you  will  find  that  there  are  some  operators  with  lower
precedence than the logical ones. In particular, this is a very common mistake:

if(a&b == c){...



What happens is that  b is compared for equality with  c, then the  1 or  0 result is
anded with a! Some distinctly unexpected behaviour has been caused by that sort
of error.

3.4. Strange operators
There  are  two  operators  left  to  mention  which  look  decidedly  odd.  They  aren't
'essential', but from time to time do have their uses. Don't ignore them completely.
This is the only place where we describe them, so our description includes what
happens when they are mixed with pointer types, which makes them look more
complicated than they really are.

3.4.1. The ?: operator
Like playing the accordion, this is easier to demonstrate than to describe.

expression1?expression2:expression3

If  expression1 is  true,  then  the  result  of  the  whole  expression  is  expression2,
otherwise it  is  expression3;  depending on the value of  expression1,  only one of
them will be evaluated when the result is calculated.

The  various  combinations  of  types  that  are  permitted  for  expression2 and
expression3 and, based on those, the resulting type of the whole expression, are
complicated. A lot of the complexity is due to types and notions that we haven't
seen so far. For completeness they are described in detail below, but you'll have to
put up with a number of forward references.

The easiest case is when both expressions have arithmetic type (i.e.  integral  or
real). The usual arithmetic conversions are applied to find a common type for both
expressions and then that is the type of the result. For example

a>b?1:3.5

contains a constant (1) of type int and another (3.5) of type double. Applying the
arithmetic conversions gives a result of type double.

Other combinations are also permitted.

 If both operands are of compatible structure or union types, then that is the
type of the result.

If both operands have void type, then that is the type of the result.

Various pointer types can be mixed.

 Both operands may be pointers to (possibly qualified) compatible types.

 One operand may be a pointer and the other a null pointer constant.
One operand may be a  pointer to an object or incomplete type and the other a
pointer to (possibly qualified) void.

The type of the result when pointers are involved is derived in two separate steps.



1. If either of the operands is a pointer to a qualified type, the result is a pointer
to a type that is qualified by all the qualifiers of both operands.

If one operand is a null pointer constant, then the result has the type of the other
operand. If  one operand is a pointer to void,  the other operand is converted to
pointer to void and that is the type of the result. If both operands are pointers to
compatible types (ignoring any qualifiers) the the result has the composite type.

Qualifiers, composite types and compatible types are all subjects discussed later.

The shortest useful example that we can think of is this one, where the string to be
printed by printf is selected using this magical operator.

#include <stdio.h>
#include <stdlib.h>
main(){
      int i;
      for(i=0; i <= 10; i++){
              printf((i&1) ? "odd\n" : "even\n");
      }
      exit(EXIT_SUCCESS);
}

Example 3.24

It's cute when you need it, but the first time that they see it most people look very
uncomfortable for a while, then recollect an urgent appointment somewhere else.

After evaluating the first operand there is one of the sequence points described in
Chapter     8.

3.4.2. The comma operator
This wins the prize for 'most obscure operator'. It allows a list of expressions to be
separated by commas:

expression-1,expression-2,expression-3,...,expression-n

and it goes on as long as you like. The expressions are evaluated strictly left to right
and their values discarded, except for the last one, whose type and value determine
the result of the overall expression. Don't confuse this version of the comma with
any of  the other  uses C finds for  it,  especially  the one that  separates  function
arguments. Here are a couple of examples of it in use.



#include <stdio.h>
#include <stdlib.h>
main(){
      int i, j;
      /* comma used - this loop has two counters */
      for(i=0, j=0; i <= 10; i++, j = i*i){
              printf("i %d j %d\n", i, j);
      }
      /*
       * In this futile example, all but the last
       * constant value is discarded.
       * Note use of parentheses to force a comma
       * expression in a function call.
       */
      printf("Overall: %d\n", ("abc", 1.2e6, 4*3+2));
      exit(EXIT_SUCCESS);
}

Example 3.25

Unless  you  are  feeling  very  adventurous,  the  comma  operator  is  just  as  well
ignored. Be prepared to see it only on special occasions.

After evaluating each operand there is  one of  the  sequence points described in
Chapter     8.

3.5. Summary
This chapter has described the entire range of control of flow available in C. The
only  areas  that  cause even moderate surprise  are  the way in which cases  in a
switch statement are not mutually exclusive, and the fact that goto cannot transfer
control  to  any  function  except  the  one  that  is  currently  active.  None  of  this  is
intellectually  deep  and  it  has  never  been  known  to  cause  problems  either  to
beginners or programmers experienced in other languages.

The logical expressions all give integral results. This is perhaps slightly unusual, but
once again takes very little time to learn.

Probably the most surprising part about the whole chapter will have been to learn of
the conditional and comma operators. A strong case could be made for the abolition
of the conditional operator, were it not for compatibility with existing code, but the
comma operator does have important uses, especially for automatic generators of
C programs.

The Standard has not had much effect on the contents of this chapter. Prospective
users of C should ensure that they are completely familiar with all  of the topics
discussed here (except the conditional and comma operators). They are essential to
the practical use of the language, and none of the material is hard.

3.6. Exercises
Exercise     3.1. What is the type and value of the result of the relational operators?



Exercise     3.2. What is the type and value of the result of the logical operators ( &&,
||, and ! )?

Exercise     3.3. What is unusual about the logical operators?

Exercise     3.4. Why is break useful in switch statements?

Exercise     3.5. Why is continue not very useful in switch statements?

Exercise     3.6. What is a possible problem using continue in while statements?

Exercise     3.7. How can you jump from one function to another?



Chapter 4: Functions

4.1. Changes
The single worst feature of Old C was that there was no way to declare the number
and types of a function's arguments and to have the compiler check that the use of
the  function  was  consistent  with  its  declaration.  Although  it  didn't  do  a  lot  of
damage to the success of C, it did result in portability and maintainability problems
that we all could have done without.

The Standard has changed that state of affairs. You can now declare functions in a
way that allows their use to be checked, and which is also largely compatible with
the  old  style  (so  old  programs  still  work,  provided  they  had  no  errors  before).
Another useful feature is a portable way of using functions with a variable number
of  arguments,  like  printf,  which  used  to  be  non-portable;  the  only  way  to
implement it relied upon intimate knowledge of the hardware involved.

The Standard's way of fixing this problem was in large measure to plagiarize from
C++, which had already tried out the new ideas in practice. This model has been so
successful that lots of 'Old' C compilers adopted it on their way to conforming to the
Standard.

The Standard still retains compatibility with Old C function declarations, but that is
purely for the benefit of existing programs. Any new programs should make full use
of the much tighter checking that the Standard permits and strenuously avoid the
old syntax (which may disappear one day).

4.2. The type of functions
All functions have a type: they return a value of that type whenever they are used.
The reason that C doesn't have 'procedures',  which in most other languages are
simply functions without a value,  is  that in  C it  is  permissible (in  fact  well-nigh
mandatory) to discard the eventual value of most expressions. If that surprises you,
think of an assignment

  a = 1;

That's a perfectly valid assignment, but don't forget that it has a value too. The
value is discarded. If you want a bigger surprise, try this one:

  1;

That  is  an  expression  followed  by  a  semicolon.  It  is  a  well  formed  statement
according to the rules of the language; nothing wrong with it, it is just useless. A
function used as a procedure is used in the same way-a value is always returned,
but you don't use it:

  f(argument);

is also an expression with a discarded value.



It's all very well saying that the value returned by a function can be ignored, but the
fact remains that if  the function really  does return a value then it's probably a
programming error not to do something with it.  Conversely, if  no useful value is
returned then  it's  a  good  idea  to  be  able  to  spot  anywhere  that  it  is  used  by
mistake. For both of those reasons, functions that don't return a useful value should
be declared to be void.

Functions can return any type supported by C (except for arrays and functions),
including the pointers, structures and unions which are described in later chapters.
For the types that can't be returned from functions, the restrictions can often be
sidestepped by using pointers instead.

All functions can be called recursively.

4.2.1. Declaring functions
Unfortunately, we are going to have to use some jargon now. This is one of the
times that the use of an appropriate technical term really does reduce the amount
of repetitive descriptive text that would be needed. With a bit of luck, the result is a
shorter, more accurate and less confusing explanation. Here are the terms.

declaration

The point at which a name has a type associated with it.

definition

Also a declaration, but at this point some storage is reserved for the named 
object. The rules for what makes a declaration into a definition can be 
complicated, but are easy for functions: You turn a function declaration into a 
definition by providing a body for the function in the form of a compound 
statement.

formal parameters

parameters

These are the names used inside a function to refer to its arguments.

actual arguments

arguments

These are the values used as arguments when the function is actually called. 
In other words, the values that the formal parameters will have on entry to the 
function.

The  terms  'parameter'  and  'argument'  do  tend  to  get  used  as  if  they  were
interchangeable, so don't read too much into it if you see one or the other in the
text below.



If you use a function before you declare it, it is implicitly declared to be 'function
returning int'. Although this will work, and was widely used in Old C, in Standard C
it is bad practice-the use of undeclared functions leads to nasty problems to do with
the number and type of arguments that are expected for them. All functions should
be fully declared before they are used. For example, you might be intending to use
a function in a private library called, say, aax1. You know that it takes no arguments
and returns a double. Here is how it should be declared:

  double aax1(void);

and here is how it might be used:

main(){
      double return_v, aax1(void);
      return_v = aax1();
      exit(EXIT_SUCCESS);
}

Example 4.26

The declaration  was  an interesting one.  It  defined  return_v,  actually  causing a
variable to come into existence. It  also declared  aax1 without defining it;  as we
know, functions only become defined when a body is provided for them. Without a
declaration in force, the default rules mean that aax1 would have been assumed to
be int, even though it really does return a double-which means that your program
will have undefined behaviour. Undefined behaviour is disastrous!

The presence of void in the argument list in the declaration shows that the function
really takes no arguments. If it had been missing, the declaration would have been
taken  to  give  no  information  about  the  function's  arguments.  That  way,
compatibility with Old C is maintained at the price of the ability of the compiler to
check.

To  define a  function  you  also  have  to  provide  a  body  for  it,  in  the  form of  a
compound  statement.  Since  no  function  can  itself  contain  the  definition  of  a
function,  functions  are  all  separate  from each  other  and  are  only  found  at  the
outermost  level  of  the program's  structure.  Here  is  a  possible  definition  for  the
function aax1.

  double
  aax1(void) {
        /* code for function body */
        return (1.0);
  }

It is unusual for a block-structured language to prohibit you from defining functions
inside other functions, but this is one of the characteristics of C. Although it isn't
obvious,  this  helps  to  improve  the  run-time  performance  of  C  by  reducing  the
housekeeping associated with function calls.



4.2.2. The return statement
The return statement is very important. Every function except those returning void
should  have  at  least  one,  each  return showing  what  value  is  supposed  to  be
returned at that point. Although it is possible to return from a function by falling
through  the  last  },  unless  the  function  returns  void an  unknown value  will  be
returned, resulting in undefined behaviour.

Here  is  another  example function.  It  uses  getchar to  read  characters  from the
program input and returns whatever it sees except for space, tab or newline, which
it throws away.

#include <stdio.h>
int
non_space(void){
      int c;
      while ( (c=getchar ())=='\t' || c== '\n' || c==' ')
              ; /* empty statement */
      return (c);
}

Look at the way that all of the work is done by the test in the  while statement,
whose body was  an empty statement.  It  is  not  an  uncommon sight  to  see the
semicolon of the empty statement sitting there alone and forlorn, with only a piece
of comment for company and readability. Please, please, never write it like this:

  while (something);

with the semicolon hidden away at the end like that. It's too easy to miss it when
you read the code, and to assume that the following statement is under the control
of the while.

The type of expression returned must match the type of the function, or be capable
of being converted to it as if an assignment statement were in use. For example, a
function declared to return double could contain

  return (1);

and the integral value will be converted to double. It is also possible to have just
return without any expression-but this is probably a programming error unless the
function returns void. Following the return with an expression is not permitted if
the function returns void.

4.2.3. Arguments to functions
Before the Standard, it was not possible to give any information about a function's
arguments except in the definition of the function itself. The information was only
used in the body of the function and was forgotten at the end. In those bad old
days, it was quite possible to define a function that had three  double arguments
and  only  to  pass  it  one  int, when  it  was  called.  The  program  would  compile
normally, but simply not work properly. It was considered to be the programmer's



job to check that the number and the type of arguments to a function matched
correctly. As you would expect, this turned out to be a first-rate source of bugs and
portability problems. Here is an example of the definition and use of a function with
arguments, but omitting for the moment to declare the function fully.

#include <stdio.h>
#include <stdlib.h>
main(){
      void pmax();                    /* declaration */
      int i,j;
      for(i = -10; i <= 10; i++){
              for(j = -10; j <= 10; j++){
                      pmax(i,j);
              }
      }
      exit(EXIT_SUCCESS);
}
/*
* Function pmax.
* Returns:      void
* Prints larger of its two arguments.
*/
void
pmax(int a1, int a2){                   /* definition */
      int biggest;
      if(a1 > a2){
              biggest = a1;
      }else{
              biggest = a2;
      }
      printf("larger of %d and %d is %d\n",
              a1, a2, biggest);
}

Example 4.27

What can we learn from this? To start with, notice the careful declaration that pmax
returns void. In the function definition, the matching void occurs on the line before
the function name. The reason for writing it like that is purely one of style; it makes
it easier to find function definitions if their names are always at the beginning of a
line.

The  function  declaration  (in  main)  gave  no  indication  of  any  arguments  to  the
function, yet the use of the function a couple of lines later involved two arguments.
That is permitted by both the old and Standard versions of C, but must nowadays
be considered to be bad practice . It is much better to include information
about the arguments in the declaration too, as we will see. The old style is now an
'obsolescent feature' and may disappear in a later version of the Standard.



Now on to the function definition, where the body is supplied. The definition shows
that the function takes two arguments, which will be known as a1 and a2 throughout
the body of the function. The types of the arguments are specified too, as can be
seen.

In the function definition you don't  have to  specify  the type of  each argument
because they will default to int, but this is bad style. If you adopt the practice of
always declaring arguments, even if they do happen to be int, it adds to a reader's
confidence. It indicates that you meant to use that type, instead of getting it by
accident: it wasn't simply forgotten. The definition of pmax could have been this:

  /* BAD STYLE OF FUNCTION DEFINITION */
  void
  pmax(a1, a2){
        /* and so on */

The proper way to declare and define functions is through the use of prototypes.

4.2.4. Function prototypes
The introduction of function prototypes is the biggest change of all in the Standard.

A  function  prototype  is  a  function  declaration  or  definition  which  includes
information about the number and types of the arguments that the function takes.

Although  you  are  allowed  not  to  specify  any  information  about  a  function's
arguments in a declaration, it is purely because of backwards compatibility with Old
C and should be avoided.

A declaration without any information about the arguments is not a prototype.

Here's the previous example 'done right'.



#include <stdio.h>
#include <stdlib.h>
main(){
      void pmax(int first, int second);       /*declaration*/
      int i,j;
      for(i = -10; i <= 10; i++){
              for(j = -10; j <= 10; j++){
                      pmax(i,j);
              }
      }
      exit(EXIT_SUCCESS);
}
void
pmax(int a1, int a2){                           /*definition*/
      int biggest;
      if(a1 > a2){
              biggest = a1;
      }
      else{
              biggest = a2;
      }
      printf("largest of %d and %d is %d\n",
              a1, a2, biggest);
}

Example 4.28

This time, the declaration provides information about the function arguments, so it's
a  prototype.  The  names  first and  second are  not  an  essential  part  of  the
declaration, but they are allowed to be there because it makes it easier to refer to
named arguments when you're documenting the use of the function. Using them,
we can describe the function simply by giving its declaration

  void pmax (int xx, int yy );

and then say that  pmax prints whichever of the arguments  xx or  yy is the larger.
Referring to  arguments  by their  position,  which  is  the  alternative (e.g.  the fifth
argument), is tedious and prone to miscounting.

All the same, you can miss out the names if you want to. This declaration is entirely
equivalent to the one above.

  void pmax (int,int);

All that is needed is the type names.

For a function that has no arguments the declaration is

  void f_name (void);

and a function that has one  int, one double and an unspecified number of other
arguments is declared this way:



  void f_name (int,double,...);

The ellipsis (...) shows that other arguments follow. That's useful because it allows
functions like printf to be written. Its declaration is this:

  int printf (const char *format_string,...)

where the type of the first argument is 'pointer to const char'; we'll discuss what
that means later.

Once the compiler knows the types of a function's arguments, having seen them in
a  prototype,  it's  able  to  check  that  the  use  of  the  function  conforms  to  the
declaration.

If a function is called with arguments of the wrong type, the presence of a prototype
means that the actual argument is converted to the type of the formal argument 'as
if by assignment'. Here's an example: a function is used to evaluate a square root
using Newton's method of successive approximations.

#include <stdio.h>
#include <stdlib.h>
#define DELTA 0.0001
main(){
      double sq_root(double); /* prototype */
      int i;
      for(i = 1; i < 100; i++){
              printf("root of %d is %f\n", i, sq_root(i));
      }
      exit(EXIT_SUCCESS);
}
double
sq_root(double x){      /* definition */
      double curr_appx, last_appx, diff;
      last_appx = x;
      diff = DELTA+1;
      while(diff > DELTA){
              curr_appx = 0.5*(last_appx
                      + x/last_appx);
              diff = curr_appx - last_appx;
              if(diff < 0)
                      diff = -diff;
              last_appx = curr_appx;
      }
      return(curr_appx);
}

Example 4.29

The prototype tells everyone that sq_root takes a single argument of type double.
The  argument  actually  passed  in  the  main  function  is  an  int,  so  it  has  to  be
converted to double first. The critical point is that if no prototype had been seen, C
would assume that the programmer had meant to pass an int and an int is what



would  be  passed.  The  Standard  simply  notes  that  this  results  in  undefined
behaviour, which is as understated as saying that catching rabies is unfortunate.
This  is  a  very  serious  error and has  led to many,  many problems in  Old  C
programs.

The conversion of  int to  double could be done because the compiler had seen a
protoytpe for the function and knew what to do about it. As you would expect, there
are various rules used to decide which conversions are appropriate, so we need to
look at them next.

4.2.5. Argument Conversions
When a function is called, there are a number of possible conversions that will be
applied to the values supplied as arguments depending on the presence or absence
of a prototype. Let's get one thing clear: although you can use these rules to work
out what to do if you haven't used prototypes, it is a recipe for pain and misery in
the long run. It's so easy to use prototypes that there really is no excuse for not
having them, so the only time you will need to use these rules is if you are being
adventurous and using functions with a variable number of arguments, using the
ellipsis notation in the prototype that is explained in Chapter     9.

The rules mention the  default argument promotions and compatible type. Where
they are used, the default argument promotions are:

 Apply the integral promotions (see Chapter     2) to the value of each argument
If the type of the argument is float it is converted to double

The introduction of prototypes (amongst other things) has increased the need for
precision about 'compatible types', which was not much of an issue in Old C. The full
list of rules for type compatibility is deferred until  Chapter     8, because we suspect
that most C programmers will never need to learn them. For the moment, we will
simply work on the basis  that  if  two types are  the same,  they are  indisputably
compatible.

The conversions are  applied according to these rules (which are intended to be
guidance on how to apply the Standard, not a direct quote):

1. At the point of calling a function, if no prototype is in scope, the arguments all
undergo the default argument promotions. Furthermore: 

 If the number of arguments does not agree with the number of formal
parameters to the function, the behaviour is undefined.

 If the function definition was not a definition containing a prototype,
then  the  type  of  the  actual  arguments  after  promotion  must  be
compatible with the types of the formal parameters in the definition
after  they  too  have  had  the  promotions  applied.  Otherwise  the
behaviour is undefined.

 If the function definition was a definition containing a prototype, and
the types of the actual arguments after promotion are not compatible



with  the formal  parameters  in  the  prototype,  then  the behaviour  is
undefined. The behaviour is also undefined it the prototype included
ellipsis (, ...).

At the point of  calling a function,  if  a prototype  is in scope, the arguments are
converted,  as  if  by  assignment,  to  the  types  specified  in  the  prototype.  Any
arguments  which  fall  under  the  variable  argument  list  category  (specified  by
the ... in the prototype) still undergo the default argument conversions.

It is possible to write a program so badly that you have a prototype in scope
when you call the function, but for the function definition itself not to have a
prototype.  Why anyone should do this  is  a  mystery,  but  in  this  case,  the
function that is called must have a type that is compatible with the apparent
type at the point of the call.

The order of evaluation of the arguments in the function call is explicitly not defined
by the Standard.

4.2.6. Function definitions
Function prototypes allow the same text to be used for both the declaration and
definition of a function. To turn a declaration:

Double
some_func(int a1, float a2, long double a3);

into a definition, we provide a body for the function:

double
some_func(int a1, float a2, long double a3){
      /* body of function */
      return(1.0);
}

by  replacing  the  semicolon  at  the  end  of  the  declaration  with  a  compound
statement.

In either a definition or a declaration of a function, it serves as a prototype if the
parameter types are specified; both of the examples above are prototypes.

The  Old  C  syntax  for  the  declaration  of  a  function's  formal  arguments  is  still
supported by the Standard, although it should not be used by new programs. It
looks like this, for the example above:

double
some_func(a1, a2, a3)
      int a1;
      float a2;
      long double a3;
{
      /* body of function */
      return(1.0);
}



Because no type information is provided for the parameters at the point where they
are named, this form of definition does not act as a prototype. It declares only the
return type of the function; nothing is remembered by the compiler about the types
of the arguments at the end of the definition.

The Standard warns that support for this syntax may disappear in a later version. It
will not be discussed further.

Summary
1. Functions can be called recursively.
2. Functions can return any type that you can declare, except for arrays and

functions  (you  can  get  around  that  restriction  to  some  extent  by  using
pointers). Functions returning no value should return void.

3. Always use function prototypes.
4. Undefined behaviour results if  you call  or  define a function anywhere in a

program unless either 
 a prototype is always in scope for every call or definition, or

 you are very, very careful.
5. Assuming that you  are using prototypes, the values of the arguments to a

function call are converted to the types of the formal parameters exactly as if
they had been assigned using the = operator.

6. Functions taking no arguments should have a prototype with (void) as the
argument specification.

Functions taking a variable number of arguments must take at least one named
argument; the variable arguments are indicated by ... as shown:

Int
vfunc(int x, float y, ...);

Chapter     9 describes how to write this sort of function.

4.2.7. Compound statements and declarations
As we have seen, functions always have a compound statement as their body. It is
possible to declare new variables inside any compound statement; if any variables
of the same name already exist, then the old ones are hidden by the new ones
within the new compound statement.  This is  the same as in every other  block-
structured  language.  C  restricts  the  declarations  to  the  head  of  the  compound
statement (or 'block'); once any other kind of statement has been seen in the block,
declarations are no longer permitted within that block.

How can it be possible for names to be hidden? The following example shows it
happening:



int a;                  /* visible from here onwards */
void func(void){
      float a;        /* a different 'a' */
      {
              char a; /* yet another 'a' */
      }
                      /* the float 'a' reappears */
}
                      /* the int 'a' reappears */

Example 4.30

A name declared inside a block hides any outer versions of the same name until the
end of the block where it is declared. Inner blocks can also re-declare that name-you
can do this for ever.

The scope of a name is the range in which it has meaning. Scope starts from the
point at which the name is mentioned and continues from there onwards to the end
of the block in which it is declared. If it is external (outside of any function) then it
continues to the end of the file. If it is internal (inside a function), then it disappears
at the end of the block containing it. The scope of any name can be suspended by
redeclaring the name inside a block.

Using knowledge of the scope rules, you can play silly tricks like this one:

main () {}
int i;
f () {}
f2 () {}

Now  f and  f2 can use  i, but  main can't, because the declaration of the variable
comes later than that of main. This is not an aspect that is used very much, but it is
implicit  in the way that C processes declarations.  It  is a source of confusion for
anyone reading the file (external declarations are generally expected to precede
any function definitions in a file) and should be avoided.

The  Standard  has  changed  things  slightly  with  respect  to  a  function's  formal
parameters.  They  are  now  considered  to  have  been  declared  inside  the  first
compound statement, even though textually they aren't: this goes for both the new
and old ways of function definition. So, if a function has a formal parameter with the
same name as  something  declared  in  the  outermost  compound  statement,  this
causes an error which will be detected by the compiler.

In Old C, accidental redefinition of a function's formal parameter was a horrible and
particularly difficult mistake to track down. Here is what it would look like:

/* erroneous redeclaration of arguments */
func(a, b, c){
      int a;  /* AAAAgh! */
}



The pernicious bit is the new declaration of a in the body of the function, which
hides the parameter called a. Since the problem has now been eliminated we won't
investigate it any further.

4.3. Recursion and argument passing
So far, we've seen how to give functions a type (how to declare the return value and
the type of any arguments the function takes), and how the definition is used to
give the body of the function. Next we need to see what the arguments can be used
for.

4.3.1. Call by value
The way that C treats arguments to functions is both simple and consistent, with no
exceptions to the single rule.

When a function is called, any arguments that are provided by the caller are simply
treated  as  expressions.  The  value  of  each  expression  has  the  appropriate
conversions  applied  and  is  then  used  to  initialize  the  corresponding  formal
parameter in the called function, which behaves in exactly the same way as any
other local variables in the function. It's illustrated here:

void called_func(int, float);
main(){
      called_func(1, 2*3.5);
      exit(EXIT_SUCCESS);
}
void
called_func(int iarg, float farg){
      float tmp;
      tmp = iarg * farg;
}
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The arguments to called_func in  main are two expressions, which are evaluated.
The value of each expression is used to initialize the parameters iarg and farg in
called_func, and the parameters are indistinguishable from the other local variable
declared in called_func, which is tmp.

The initialization of the formal parameters is the last time that any communication
occurs between the caller and the called function, except for the return value.

For those who are used to FORTRAN and var arguments in Pascal, where a function
can change the values of its arguments: forget it. You cannot affect the values of a
function's actual arguments by anything that you try. Here is an example to show
what we mean.



#include <stdio.h>
#include <stdlib.h>
main(){
      void changer(int);
      int i;
      i = 5;
      printf("before i=%d\n", i);
      changer(i);
      printf("after i=%d\n", i);
      exit(EXIT_SUCCESS);
}
void
changer(int x){
      while(x){
              printf("changer: x=%d\n", x);
              x--;
      }
}

Example 4.32

The result of running that is:

before i=5
changer: x=5
changer: x=4
changer: x=3
changer: x=2
changer: x=1
after i=5

The function changer uses its formal parameter x as an ordinary variable-which is
exactly what it is. Although the value of  x is changed, the variable  i (in main) is
unaffected. That is the whole point-the arguments in C are passed into a function by
their value only, no changes made by the function are passed back.

4.3.2. Call by reference
It is possible to write functions that take pointers as their arguments, giving a form
of call  by reference. This is described in  Chapter     5 and  does allow functions to
change values in their callers.

4.3.3. Recursion
With argument passing safely out of the way we can look at recursion. Recursion is
a topic that often provokes lengthy and unenlightening arguments from opposing
camps. Some think it is wonderful, and use it at every opportunity; some others
take exactly the opposite view. Let's just say that when you need it, you really do
need it, and since it doesn't cost much to put into a language, as you would expect,
C supports recursion.



Every function in C may be called from any other or itself.  Each invocation of a
function causes a new allocation of  the variables declared inside it.  In  fact,  the
declarations that we have been using until now have had something missing: the
keyword auto, meaning 'automatically allocated'.

/* Example of auto */
main(){
      auto int var_name;
      .
      .
      .
}

The storage for auto variables is automatically allocated and freed on function entry
and return. If two functions both declare large automatic arrays, the program will
only have to find room for both arrays if both functions are active at the same time.
Although auto is a keyword, it is never used in practice because it's the default for
internal declarations and is invalid for external ones. If an explicit initial value (see '
initialization') isn't given for an automatic variable, then its value will be unknown
when  it  is  declared.  In  that  state,  any  use  of  its  value  will  cause  undefined
behaviour.

The real  problem with  illustrating  recursion  is  in  the selection of  examples.  Too
often, simple examples are used which don't really get much out of recursion. The
problems where it really helps are almost always well out of the grasp of a beginner
who  is  having  enough  trouble  trying  to  sort  out  the  difference  between,  say,
definition and declaration without wanting the extra burden of having to wrap his or
her mind around a new concept as well. The chapter on data structures will show
examples of recursion where it is a genuinely useful technique.

The following example uses recursive functions to evaluate expressions involving
single digit numbers, the operators  *,  %,  /,  +,  - and parentheses in the same way
that C does. (Stroustrup1, in his book about C++, uses almost an identical example
to illustrate recursion. This happened purely by chance.) The whole expression is
evaluated and its value printed when a character not in the 'language' is read. For
simplicity  no error  checking is  performed.  Extensive use is  made of  the  ungetc
library function, which allows the last character read by getchar to be 'unread' and
become once again the next character to be read. Its second argument is one of the
things declared in stdio.h.

Those of you who understand BNF notation might like to know that the expressions
it will understand are described as follows:

<primary> ::= digit | (<exp>)
<unary>   ::= <primary> | -<unary> | +<unary>
<mult>    ::= <unary> | <mult> * <unary> |

1 Stroustrup B. (1991). The C++ Programming Language 2nd edn. Reading, MA: Addison-
Wesley



              <mult> / <unary> | <mult> % <unary>
<exp>     ::= <exp> + <mult> | <exp> - <mult> | <mult>

The main places where recursion occurs are in the function unary_exp, which calls
itself, and at the bottom level where  primary calls the top level all over again to
evaluate parenthesized expressions.

If you don't understand what it does, try running it. Trace its actions by hand on
inputs such as

1
1+2
1+2 * 3+4
1+--4
1+(2*3)+4

That should keep you busy for a while!



/*
* Recursive descent parser for simple C expressions.
* Very little error checking.
*/
#include <stdio.h>
#include <stdlib.h>
int expr(void);
int mul_exp(void);
int unary_exp(void);
int primary(void);
main(){
      int val;
      for(;;){
              printf("expression: ");
              val = expr();
              if(getchar() != '\n'){
                      printf("error\n");
                      while(getchar() != '\n')
                              ; /* NULL */
              } else{
                      printf("result is %d\n", val);
              }
      }
      exit(EXIT_SUCCESS);
}
int
expr(void){
      int val, ch_in;
      val = mul_exp();
      for(;;){
              switch(ch_in = getchar()){
              default:
                      ungetc(ch_in,stdin);
                      return(val);
              case '+':
                      val = val + mul_exp();
                      break;
              case '-':
                      val = val - mul_exp();
                      break;
              }
      }
}
int
mul_exp(void){
      int val, ch_in;
      val = unary_exp();
      for(;;){
              switch(ch_in = getchar()){
              default:
                      ungetc(ch_in, stdin);
                      return(val);



              case '*':
                      val = val * unary_exp();
                      break;
              case '/':
                      val = val / unary_exp();
                      break;
              case '%':
                      val = val % unary_exp();
                      break;
              }
      }
}
int
unary_exp(void){
      int val, ch_in;
      switch(ch_in = getchar()){
      default:
              ungetc(ch_in, stdin);
              val = primary();
              break;
      case '+':
              val = unary_exp();
              break;
      case '-':
              val = -unary_exp();
              break;
      }
      return(val);
}
int
primary(void){
      int val, ch_in;
      ch_in = getchar();
      if(ch_in >= '0' && ch_in <= '9'){
              val = ch_in - '0';
              goto out;
      }
      if(ch_in == '('){
              val = expr();
              getchar();      /* skip closing ')' */
              goto out;
      }
      printf("error: primary read %d\n", ch_in);
      exit(EXIT_FAILURE);
out:
      return(val);
}

Example 4.33

4.4. Linkage



Although the simple examples have carefully avoided the topic, we now have to
look into the effects of scope and linkage, terms used to describe the accessibility of
various objects in a C program. Why bother? It's because realistic programs are built
up out of multiple files and of course libraries. It is clearly crucial that functions in
one file should be able to refer to functions (or other objects) in other files and
libraries;  naturally  there are  a  number  of  concepts  and rules that  apply  to  this
mechanism.

If you are relatively new to C, there are more important subjects to cover first. Come
back to this stuff later instead.

There are essentially two types of object in C: the internal and external objects. The
distinction between external and internal is to do with functions: anything declared
outside a function is external, anything inside one, including its formal parameters,
is internal. Since no function can be defined inside another, functions themselves
are always external. At the outermost level, a C program is a collection of external
objects.

Only external objects participate in this cross-file and library communication.

The term used by the Standard to describe the accessibility of objects from one file
to another, or even within the same file, is linkage. There are three types of linkage:
external linkage, internal linkage and no linkage. Anything internal to a function-its
arguments,  variables  and  so  on-always has  no  linkage  and  so  can  only  be
accessed  from  inside  the  function  itself.  (The  way  around  this  is  to  declare
something inside a function but prefix it with the keyword extern which says 'it isn't
really internal', but we needn't worry about that just yet.)

Objects that have external linkage are all considered to be located at the outermost
level of the program; this is the default linkage for functions and anything declared
outside of  a function.  All  instances  of  a  particular  name with  external
linkage  refer  to  the  same  object  in  the  program.  If  two  or  more
declarations of the same name have external linkage but incompatible types, then
you've done something very silly and have undefined behaviour. The most obvious
example of external linkage is the printf function, whose declaration in <stdio.h> is

int printf(const char *, ...);

From  that  we  can  tell  that  it's  a  function  returning  int  and  with  a  particular
prototype-so we know everything about its type. We also know that it has external
linkage,  because  that  is  the  default  for  every  external  object.  As  a  result,
everywhere that the name print is used with external linkage, we are referring to
this function.

Quite often, you want to be able to declare functions and other objects within a
single  file  in  a  way  that  allows  them  to  reference  each  other  but  not to  be
accessible from outside that file. This is often necessary in the modules that support
library functions, where the additional framework that makes those functions work



is not interesting to the user and would be a positive nuisance if the names of those
things became visible outside the module. You do it  through the use of  internal
linkage.

Names with internal linkage only refer to the same object within a single source file.
You do this by prefixing their declarations with the keyword static, which changes
the linkage of external objects from external linkage to internal linkage. It is also
possible to declare internal objects to be static, but that has an entirely different
meaning which we can defer for the moment.

It's confusing that the types of linkage and the types of object are both described by
the terms 'internal' and 'external'; this is to some extent historical. C archaeologists
may know that at one time the two were equivalent and one implied the other-for us
it's  unfortunate  that  the  terms  remain  but  the  meanings  have  diverged.  To
summarize:

Type of
linkage

Type of
object

Accessibility

external external
throughout  the
program

internal external a single file

none internal
local  to  a  single
function

Table 4.12 - Linkage and accessibility

Finally,  before we see an example,  it  is  important  to  know that  all  objects  with
external linkage must have one and only one definition, although there can be as
many compatible declarations as you like. Here's the example.

/* first file */
int i; /* definition */
main () {
  void f_in_other_place (void);   /* declaration */
  i = 0
}
/* end of first file */
/* start of second file */
extern int i; /* declaration */
void f_in_other_place (void){   /* definition */
  i++;
}
/* end of second file */

Example 4.34

Although the full set of rules is a bit more complex, the basic way of working out
what constitutes a definition and a declaration is not hard:



 A function declaration without a body for the function is just a declaration.

 A function declaration with a body for the function is a definition.
At the external level, a declaration of an object (like the variablei) is a definition
unless it has the keyword extern in front of it, when it is a declaration only.

Chapter     8 revisits the definition and declaration criteria to a depth that will cause
decompression sickness when you surface.

In the example it's easy to see that each file is able to access the objects defined in
the other by using their names. Just from that example alone you should be able to
work out how to construct programs with multiple files and functions and variables
declared or defined as appropriate in each of them.

Here's another example, using static to restrict the accessibility of functions and
other things.

/* example library module */
/* only 'callable' is visible outside */
static buf [100];
static length;
static void fillup(void);
int
callable (){
      if (length ==0){
              fillup ();
      }
      return (buf [length--]);
}
static void
fillup (void){
      while (length <100){
              buf [length++] = 0;
      }
}

Example 4.35

A user of this module can safely re-use the names declared here, length, buf, and
fillup,  without  any  danger  of  surprising  effects.  Only  the  name  callable is
accessible outside this module.

A very useful thing to know is that any external object that has no other initalizer
(and except for functions we haven't seen any initializers yet) is always set to the
value  of  zero  before  the  program  starts.  This  is  widely  used  and  relied  on-the
previous example relies on it for the initial value of length.

4.4.1. Effect of scope
There's one additional complicating factor beyond simply linkage. Linkage allows
you  to  couple  names  together  on  a  per-program or  a  per-file  basis,  but  scope
determines  the  visibility  of  the  names.  Fortunately,  the  rules  of  scope  are



completely  independent  of  anything  to  do  with  linkage,  so  you  don't  have  to
remember funny combinations of both.

What introduces the complexity is the dreaded extern keyword. The nice regular
block structure gets blown to pieces with this, which although at a first glance is
simple and obvious, does some very nasty things to the fabric of the language. We'll
leave its nasty problems to  Chapter     8, since they only rear up if you deliberately
start  to  do perverse  things with  it  and  then say  'what  does  this  mean'?  We've
already seen it used to ensure that the declaration of something at the outer block
level (the external level) of the program is a declaration and not a definition (but
beware: you can still override the extern by, for example, providing an initializer for
the object).

Unless you prefix it with extern, the declaration of any data object (not a function)
at the outer level is also a definition. Look back to Example  4 .34 to see this in use.

All function declarations implicitly have the extern stuck in front of them, whether
or  not  you  put  it  there  too.  These  two  ways  of  declaring  some_function are
equivalent and are always declarations:

void some_function(void);
extern void some_function(void);

The thing that mysteriously turns those declarations into definitions is that when
you also provide the body of the function, that is effectively the initializer for the
function, so the comment about initializers comes into effect and the declaration
becomes a definition. So far, no problem.

Now, what is going on here?

void some_function(void){
      int i_var;
      extern float e_f_var;
}
void another_func(void){
      int i;
      i = e_f_var;    /* scope problem */
}

What  happened  was  that  although  the  declaration  of  e_f_var declares  that
something called e_f_var is of type float and is accessible throughout the entire
program,  the  scope of  the  name  disappears  at  the  end  of  the  function  that
contains it. That's why it is meaningless inside another_func-the name of e_f_var
is out of scope, just as much as i_var is.

So what use is  that? It's  sometimes handy if  you only want to make use of an
external object from within a single function. If you followed the usual practice and
declared it at the head of the particular source file, then there is no easy way for the
reader of that file to see which functions actually use it. By restricting the access
and the scope of the name to the place where is needed, you do communicate to a



later reader of the program that this is a very restricted use of the name and that
there is no intention to make widespread use of it throughout the file. Of course, any
half-way decent  cross-reference  listing  would  communicate  that  anyway,  so  the
argument is a bit hard to maintain.

Chapter     8 is the place to find out more. There's a set of guidelines for how to get
the results that are most often wanted from multi-file construction, and a good deal
more  detail  on  what  happens  when  you  mix  extern,  static and  internal  and
external declarations. It isn't the sort of reading that you're likely to do for pleasure,
but it does answer the 'what if' questions.

4.4.2. Internal static
You are also allowed to declare internal objects as  static. Internal variables with
this attribute have some interesting properties: they are initialized to zero when the
program  starts,  they  retain  their  value  between  entry  to  and  exit  from  the
statement containing their  declaration  and there is  only  one copy of  each one,
which is shared between all recursive calls of the function containing it.

Internal statics can be used for a number of things. One is to count the number of
times that a function has been called; unlike ordinary internal variables whose value
is lost after leaving their function, statics are convenient for this. Here's a function
that always returns a number between 0 and 15, but remembers how often it was
called.

int
small_val (void) {
      static unsigned count;
      count ++;
      return (count % 16);
}

Example 4.36

They can help detect excessive recursion:



void
r_func (void){
      static int depth;
      depth++;
      if (depth > 200) {
              printf ("excessive recursion\n");
              exit (1);
      }
      else {
              /* do usual thing,
               * not shown here.
               * This last action
               * occasionally results in another
               * call on r_func()
               */
              x_func();
      }
      depth--;
}

Example 4.37

4.5. Summary
With the appropriate declarations, you can have names that are visible throughout
the program or limited to a single file or limited to a single function, as appropriate.

Here are the combinations of the use of the keywords, the types of declarations and
the resulting linkage:

Declaration Keyword Resulting Linkage Accessibility Note

external none external entire program 2

external extern external entire program 2

external static internal a single file 2

internal none none a single function

internal extern external entire program 1

internal static none a single function 2

Although the accessibility of internal declarations prefixed with extern is program-
wide, watch out for the scope of the name.

External (or internal  static) objects are initialized once only, at program start-up.
The absence of explicit initialization is taken to be a default initialization of zero.

Table 4.13 - Summary of Linkage

There are a few golden rules for the use of functions that are worth re-stating too.



 To use a function returning other than int, a declaration or definition must be
in scope.

Do not return from a function by falling out of its body unless its type is void.

A declaration of the types of arguments that a function takes is not mandatory, but
it is extremely strongly recommended.

Functions taking a variable number of arguments can be written portably if you use
the methods described in Section     9.9.

Functions are the cornerstone of C. Of all the changes to the language, the Standard
has  had by  far  its  most  obvious  effect  by  introducing  function  prototypes.  This
change has won widespread approval throughout the user community and should
help to produce a substantial improvement in reliability of C programs, as well as
opening the possibility of optimization by compilers in areas previously closed to
them.

The use of call-by-value is sometimes surprising to people who have used languages
that prefer a different mechanism, but at least the C approach is the 'safest' most of
the time.

The attempts by the Standard to remove ambiguity in the scope and meaning of
declarations  are  interesting,  but  frankly  have explored  an  obscure  region which
rarely caused any difficulties in practice.

From the beginner's point of view, it is important to learn thoroughly everything
discussed in this chapter, perhaps with the exception of the linkage rules. They can
be deferred for a more leisurely inspection at some later time.

4.6. Exercises
If  you  skipped  the  section  on  Linkage,  then  Exercise 4.2,  Exercise 4.3,  and
Exercise 4.4 will cause you problems; it's up to you whether or not you want to read
it and then try them.

Write a function and the appropriate declaration for the following tasks:

Exercise     4.1. A function called abs_val that returns int and takes an int argument.
It returns the absolute value of its argument, by negating it if it is negative.

Exercise     4.2. A function called  output that takes a single character argument and
sends  it  to  the program output  with  putchar.  It  will  remember the current  line
number and column number reached on the output device-the only values passed
to the function are guaranteed to be alphanumeric, punctuation, space and newline
characters.

Exercise     4.3. Construct  a  program  to  test  output,  where  that  function  is  in  a
separate file from the functions that are used to test it. In the same file as output
will be two functions called  current_line and  current_column which return the
values  of  the  line  and  column  counters.  Ensure  that  those  counters  are  made
accessible only from the file that contains them.



Exercise     4.4. Write and test a recursive function that performs the admittedly dull
task of printing a list of numbers from 100 down to 1. On entry to the function it
increments a static variable. If  the variable has a value below 100, it calls itself
again. Then it prints the value of the variable, decrements it and returns. Check that
it works.

Exercise 4.5. Write functions to calculate the sine and cosine of their input. Choose
appropriate types for both argument and return value. The series (given below) can
be used to approximate the answer. The function should return when the value of
the final term is less than 0.000001 of the current value of the function.

sin x = x - pow(x,3)/fact(3) + pow(x,5)/fact(5)...
cos x = 1 - pow(x,2)/fact(2) + pow(x,4)/fact(4)...

Note  the  fact  that  the  sign  in  front  of  each  term  alternates  (--+--+--+...).
pow(x,n) returns x to the nth power, fact(n) factorial of n (1 × 2 × 3 × ? × n). You
will have to write such functions. Check the results against published tables.



Chapter 5: Arrays and Pointers

5.1. Opening shots

5.1.1. So why is this important?
The arithmetic data types and operators of C are interesting but hardly rivetting.
They show, collectively, a certain imagination and spirit that has stamped C with a
special flavour, but they form the sauce, not the meat, of this particular dish. For
most users, it's functions and the parts of the language covered in this chapter that
provide the real feel of C.

For  the  new  reader,  this  is  the  part  of  the  language  that  causes  the  biggest
problems. Most beginners with C are at least familiar with the use of arithmetic,
functions and arrays; those are not the problem areas. The difficulties arise when
we get on to the structured types (structures and unions), and the way that C just
wouldn't be C without the use of pointers.

Pointers aren't a feature that you can choose to ignore. They're used everywhere;
their influence affects the whole language and must be the single most noticeable
feature of all but the simplest C programs. If you think that this is one of the bits
you can skip because it's hard and doesn't look too important, you are wrong! Most
of the examples used so far in this book have had pointers used in them (although
not obviously), so you might as well  accept the inevitable and learn how to use
them properly.

The most natural way to introduce the use of pointers is by looking into arrays first.
C intertwines arrays and pointers so closely that they are hard to separate. Since
you are expected to be familiar with the use of arrays, their treatment will be brief
and aimed at using them to illustrate the use of pointers when they are seen later.

5.1.2. Effect of the Standard
The new Standard has left very little mark on the contents of this chapter; a lot of it
would be nearly word for word the same even if it only talked about Old C. The
inference  to  be  drawn  is  that  nothing  was  wrong  with  the  old  version  of  the
language, and that there was nothing to be gained by fixing what wasn't broken.
This may be received with some relief by those readers who already knew this part
of the old language and who, like the Committee, felt that it was good enough to
leave alone.

Even  so,  the  introduction  of  qualified  types by  the  Standard  does  add  some
complexity to this chapter. The rules about exactly how the various arithmetic and
relational  operators work when they are applied to pointers have been clarified,
which adds bulk to the text but has not changed things substantially. In the early
examples  we  do  not  pay  a  lot  of  attention  to  them,  but  after  that  they  are
introduced gradually and where appropriate.



5.2. Arrays
Like other languages, C uses arrays as a way of describing a collection of variables
with identical properties. The group has a single name for all of the members, with
the individual members being selected by an index. Here's an array being declared:

double ar[100];

The name of the array is  ar and its members are accessed as  ar[0] through to
ar[99] inclusive, as Figure  5 .2 shows.

Figure 5.2 - 100 element array

Each of the hundred members is a separate variable whose type is double. Without
exception, all arrays in C are numbered from 0 up to one less than the bound given
in the declaration. This is a prime cause of surprise to beginners-watch out for it. For
simple examples of the use of arrays, look back at earlier chapters where several
problems are solved with their help.

One important point about array declarations is that they don't permit the use of
varying subscripts. The numbers given must be constant expressions which can be
evaluated at compile time, not run time. For example, this function incorrectly tries
to use its argument in the size of an array declaration:

f(int x){
      char var_sized_array[x];        /* FORBIDDEN */
}

It's forbidden because the value of x is unknown when the program is compiled; it's
a run-time, not a compile-time, value.

To  tell  the  truth,  it  would  be  easy  to  support  arrays  whose  first dimension  is
variable, but neither Old C nor the Standard permits it, although we do know of one
Very Old C compiler that used to do it.

5.2.1. Multidimensional arrays
Multidimensional arrays can be declared like this:

int three_dee[5][4][2];
int t_d[2][3]

The  use  of  the  brackets  gives  a  clue  to  what  is  going  on.  If  you  refer  to  the
precedence table given in  Section     2.8.3 (Table  2 .9), you'll see that [] associates
left to right and that, as a result, the first declaration gives us a five-element array
called three_dee. The members of that array are each a four element array whose
members are an array of two ints. We have declared arrays of arrays, as Figure  5 .3
shows for two dimensions.



Figure 5.3 - Two-dimensional array, showing layout
In the diagram, you will notice that t_d[0] is one element, immediately followed by
t_d[1] (there  is  no  break).  It  so  happens  that  both  of  those  elements  are
themselves arrays of three integers. Because of C's storage layout rules, t_d[1][0]
is immediately after  t_d[0][2].  It  would be possible (but very poor practice)  to
access t_d[1][0] by making use of the lack of array-bound checking in C, and to
use the expression t_d[0][3]. That is not recommended-apart from anything else,
if the declaration of t_d ever changes, then the results will be likely to surprise you.

That's all very well, but does it really matter in practice? Not much it's true; but it is
interesting to note that in terms of actual machine storage layout the rightmost
subscript 'varies fastest'. This has an impact when arrays are accessed via pointers.
Otherwise, they can be used just as would be expected; expressions like these are
quite in order:

three_dee[1][3][1] = 0;
three_dee[4][3][1] += 2;

The second of those is interesting for two reasons. First, it accesses the very last
member of the entire array-although the subscripts were declared to be [5][4][2],
the highest usable subscript is always one less than the one used in the declaration.
Second, it shows where the combined assignment operators are a real blessing. For
the experienced C programmer it is much easier to tell that only one array member
is being accessed, and that it is being incremented by two. Other languages would
have to express it like this:

three_dee[4][3][1] = three_dee[4][3][1] + 2;

It takes a conscious effort to check that the same array member is being referenced
on both sides of the assignment. It makes thing easier for the compiler too: there is
only one array indexing calculation to do, and this is likely to result in shorter, faster
code. (Of course a clever compiler would notice that the left- and right-hand sides
look alike and would be able to generate equally efficient code-but not all compilers
are  clever  and  there  are  lots  of  special  cases  where  even clever  compilers  are
unable to make use of the information.)

It may be of interest to know that although C offers support for multidimensional
arrays, they aren't particularly common to see in practice. One-dimensional arrays
are present in most programs, if for no other reason than that's what strings are.
Two dimensional arrays are seen occasionally, and arrays of higher order than that
are most uncommon. One of the reasons is that the array is a rather inflexible data
structure, and the ease of building and manipulating other types of data structures
in C means that they tend to replace arrays in the more advanced programs. We will
see more of this when we look at pointers.



5.3. Pointers
Using pointers is a bit like riding a bicycle. Just when you think that you'll  never
understand them-suddenly you do! Once learned the trick is hard to forget. There's
no real magic to pointers, and a lot of readers will already be familiar with their use.
The only peculiarity of C is how heavily it relies on the use of pointers, compared
with other languages, and the relatively permissive view of what you can do with
them.

5.3.1. Declaring pointers
Of course, just like other variables, you have to declare pointers before you can use
them. Pointer declarations look much like other declarations: but don't be misled.
When pointers are declared, the keyword at the beginning (c int, char and so on)
declares the type of variable that the pointer will point to. The pointer itself is not of
that  type,  it  is  of  type pointer  to  that  type.  A given pointer  only  points  to  one
particular type, not to all possible types. Here's the declaration of an array and a
pointer:

int ar[5], *ip;

We now have an array and a pointer (see Figure  5 .4):

Figure 5.4 - An array and a pointer

The * in front of  ip in the declaration shows that it is a pointer, not an ordinary
variable. It is of type pointer to int, and can only be used to refer to variables of
type int. It's still uninitialized, so to do anything useful with it, it has to be made to
point to something. You can't just stick some integer value into it, because integer
values have the type  int, not  pointer to int, which is what we want. (In any
case, what would it mean if this fragment were valid:

ip = 6;

What would  ip be pointing to? In fact it could be construed to have a number of
meanings, but the simple fact is that, in C, that sort of thing is just wrong.)

Here is the right way to initialize a pointer:

int ar[5], *ip;
ip = &ar[3];



In that example, the pointer is made to point to the member of the array ar whose
index is  3,  i.e.  the  fourth  member.  This  is  important.  You  can  assign  values  to
pointers  just  like  ordinary  variables;  the  difference  is  simply  in  what  the  value
means. The values of the variables that we have now are shown in Figure  5 .5 (??
means uninitialized).

Figure 5.5 - Array and initialized pointer

You can see that the variable ip has the value of the expression &ar[3]. The arrow
indicates that, when used as a pointer, ip points to the variable ar[3].

What is this new unary &? It is usually described as the 'address-of' operator, since
on many systems the pointer will hold the store address of the thing that it points
to. If you understand what addresses are, then you will probably have more trouble
than those who don't: thinking about pointers as if they were addresses generally
leads  to  grief.  What  seems  a  perfectly  reasonable  address  manipulation  on
processor  X can almost  always  be shown to be impossible  on manufacturer  Y's
washing  machine  controller  which  uses  17-bit  addressing  when it's  on  the  spin
cycle,  and  reverses  the  order  of  odd  and  even  bits  when  it's  out  of  bleach.
(Admittedly, it's unlikely that  anyone could get C to work an an architecture like
that.  But you should see some of  the ones it  does work  on;  they aren't  much
better.)

We will continue to use the term 'address of' though, because to invent a different
one would be even worse.

Applying the & operator to an operand returns a pointer to the operand:

int i;
float f;
      /* '&i' would be of type pointer to int */
      /* '&f' would be of type pointer to float */

In each case the pointer would point to the object named in the expression.

A pointer is only useful if there's some way of getting at the thing that it points to; C
uses the unary * operator for this job. If p is of type 'pointer to something', then *p
refers to the thing that is being pointed to. For example, to access the variable x via
the pointer p, this would work:



#include <stdio.h>
#include <stdlib.h>
main(){
      int x, *p;
      p = &x;         /* initialise pointer */
      *p = 0;         /* set x to zero */
      printf("x is %d\n", x);
      printf("*p is %d\n", *p);
      *p += 1;        /* increment what p points to */
      printf("x is %d\n", x);
      (*p)++;         /* increment what p points to */
      printf("x is %d\n", x);
      exit(EXIT_SUCCESS);
}

Example 5.38

You  might  be  interested  to  note  that,  since  & takes  the  address  of  an  object,
returning a pointer to it, and since * means 'the thing pointed to by the pointer', the
& and  * in the combination  *& effectively cancel each other out. (But be careful.
Some  things,  constants  for  example,  don't  have  addresses  and  the  & operator
cannot be applied to them; &1.5 is not a pointer to anything, it's an error.) It's also
interesting to see that C is one of the few languages that allows an expression on
the  left-hand  side  of  an  assignment  operator.  Look  back  at  the  example:  the
expression  *p occurs  twice  in  that  position,  and  then  the  amazing  (*p)++;
statement.  That  last  one  is  a  great  puzzle  to  most  beginners-even  if  you've
managed to wrap your mind around the concept that  *p = 0 writes zero into the
thing pointed to by p, and that *p += 1 adds one to where p points, it still seems a
bit much to apply the ++ operator to *p.

The precedence of (*p)++ deserves some thought. It will be given more later, but
for the moment let's work out what happens. The brackets ensure that the * applies
to p, so what we have is 'post-increment the thing pointed to by p'. Looking at Table
 2 .9, it turns out that ++ and * have equal precedence, but they associate right to
left; in other words, without the brackets, the implied operation would have been
*(p++),  whatever  that  would  mean.  Later  on  you'll  be  more  used  to  it-for  the
moment,  we'll  be careful  with brackets to  show the way that  those expressions
work.

So, provided that a pointer holds the address of something, the notation *pointer
is equivalent to giving the name of the something directly. What benefit do we get
from  all  this?  Well,  straight  away  it  gets  round  the  call-by-value  restriction  of
functions. Imagine a function that has to return, say, two integers representing a
month and a day within that month. The function has some (unspecified) way of
determining these values; the hard thing to do is to return two separate values.
Here's a skeleton of the way that it can be done:



#include <stdio.h>
#include <stdlib.h>
void
date(int *, int *);     /* declare the function */
main(){
      int month, day;
      date (&day, &month);
      printf("day is %d, month is %d\n", day, month);
      exit(EXIT_SUCCESS);
}
void
date(int *day_p, int *month_p){
      int day_ret, month_ret;
      /*
       * At this point, calculate the day and month
       * values in day_ret and month_ret respectively.
       */
      *day_p = day_ret;
      *month_p = month_ret;
}

Example 5.39

Notice  carefully  the  advance  declaration  of  date showing  that  it  takes  two
arguments of type 'pointer to int'. It returns void, because the values are passed
back via the pointers, not the usual return value. The main function passes pointers
as  arguments  to  date,  which  first  uses  the  internal  variables  day_ret and
month_ret for its calculations,  then takes those values and assigns them to the
places pointed to by its arguments.

When date is called, the situation looks like Figure  5 .6.

Figure 5.6 - Just as date is called

The  arguments  have  been  passed  to  date,  but  in  main,  day  and  month  are
uninitialized. When date reaches the return statement, the situation is as shown in
Figure  5 .7 (assuming that the values for day and month are 12 and 5 respectively).



Figure 5.7 - Just as date is about to return

One of the great benefits introduced by the new Standard is that it allows the types
of  the  arguments  to  date  to  be  declared  in  advance.  A  great  favourite  (and
disastrous)  mistake  in  C  is  to  forget  that  a  function  expects  pointers  as  its
arguments,  and  to  pass  something  else  instead.  Imagine  what  would  have
happened if the call of date above had read

date(day, month);

and no previous declaration of date had been visible. The compiler would not have
known that date expects pointers as arguments, so it would pass the int values of
day and  month as the arguments. On a large number of computers, pointers and
integers can be passed in the same way, so the function would execute, then pass
back its return values by putting them into wherever day and month would point if
their contents were pointers. This is very unlikely to give any sensible results, and in
general causes unexpected corruption of data elsewhere in the computer's store. It
can be extremely hard to track down!

Fortunately, by declaring date in advance, the compiler has enough information to
warn that a mistake has almost certainly been made.

Perhaps surprisingly, it isn't all that common to see pointers used to give this call-
by-reference functionality. In the majority of cases, call-by-value and a single return
value are adequate. What is much more common is to use pointers to 'walk' along
arrays.

5.3.2. Arrays and pointers
Array elements are just like other variables: they have addresses.

int ar[20], *ip;
ip = &ar[5];
*ip = 0;        /* equivalent to ar[5] = 0; */

The address of ar[5] is put into ip, then the place pointed to has zero assigned to
it. By itself, this isn't particularly exciting. What is interesting is the way that pointer
arithmetic works. Although it's simple, it's one of the cornerstones of C.



Adding an integral value to a pointer results in another pointer of the same type.
Adding n gives a pointer which points n elements further along an array than the
original pointer did. (Since n can be negative, subtraction is obviously possible too.)
In the example above, a statement of the form

*(ip+1) = 0;

would set ar[6] to zero, and so on. Again, this is not obviously any improvement on
'ordinary' ways of accessing an array, but the following is.

int ar[20], *ip;
for(ip = &ar[0]; ip < &ar[20]; ip++)
      *ip = 0;

That example is a classic fragment of C. A pointer is set to point to the start of an
array, then, while it still points inside the array, array elements are accessed one by
one, the pointer incrementing between each one. The Standard endorses existing
practice by guaranteeing that it's permissible to use the address of  ar[20] even
though no such element exists. This allows you to use it for checks in loops like the
one above. The guarantee only extends to one element beyond the end of an array
and no further.

Why  is  the  example  better  than  indexing?  Well,  most  arrays  are  accessed
sequentially.  Very few programming examples actually make use of  the 'random
access' feature of arrays. If you do just want sequential access, using a pointer can
give  a  worthwhile  improvement  in  speed.  In  terms  of  the  underlying  address
arithmetic,  on most architectures it  takes one multiplication and one addition to
access a one-dimensional array through a subscript. Pointers require no arithmetic
at all-they nearly always hold the store address of the object that they refer to. In
the example above, the only arithmetic that has to be done is in the  for loop,
where one comparison and one addition are done each time round the loop. The
equivalent, using indexes, would be this:

int ar[20], i;
for(i = 0; i < 20; i++)
      ar[i] = 0;

The same amount of arithmetic occurs in the loop statement, but an extra address
calculation has to be performed for every array access.

Efficiency is not normally an important issue, but here it can be. Loops often get
traversed a substantial number of times, and every microsecond saved in a big loop
can matter. It isn't always easy for even a smart compiler to recognize that this is
the sort of code that could be 'pointerized' behind the scenes, and to convert from
indexing (what the programmer wrote) to actually use a pointer in the generated
code.



If you have found things easy so far, read on. If  not, it's a good idea to skip to
Section     5.3.3. What follows, while interesting, isn't essential. It has been known to
frighten even experienced C programmers.

To be honest, C doesn't really 'understand' array indexing, except in declarations. As
far as the compiler is concerned, an expression like x[n] is translated into *(x+n)
and use made of the fact that an array name is converted into a pointer to the
array's  first  element  whenever  the  name  occurs  in  an  expression.  That's  why,
amongst other things, array elements count from zero: if x is an array name, then in
an expression,  x is equivalent to  &x[0], i.e. a pointer to the first element of the
array. So, since *(&x[0]) uses the pointer to get to x[0], *(&x[0] + 5) is the same
as *(x + 5) which is the same as x[5]. A curiosity springs out of all this. If x[5] is
translated into *(x + 5), and the expression x + 5 gives the same result as 5 + x
(it does), then  5[x] should give the identical result to  x[5]! If you don't believe
that, here is a program that compiles and runs successfully:

#include <stdio.h>
#include <stdlib.h>
#define ARSZ 20
main(){
      int ar[ARSZ], i;
      for(i = 0; i < ARSZ; i++){
              ar[i] = i;
              i[ar]++;
              printf("ar[%d] now = %d\n", i, ar[i]);
      }
      printf("15[ar] = %d\n", 15[ar]);
      exit(EXIT_SUCCESS);
}

Example 5.40

Summary
 Arrays always index from zero-end of story.

 There are no multidimensional arrays; you use arrays of arrays instead.

 Pointers point to things; pointers to different types are themselves different
types. They have nothing in common with each other or any other types in C;
there are no automatic conversions between pointers and other types.

 Pointers can be used to simulate 'call by reference' to functions, but it takes a
little work to do it.

 Incrementing or adding something to a pointer can be used to step along
arrays.

To facilitate array access by incrementing pointers, the Standard guarantees that in
an n element array, although element n does not exist, use of its address is not an
error-the valid range of addresses for an array declared as  int ar[N] is  &ar[0]
through to &ar[N]. You must not try to access this last pseudo-element.



5.3.3. Qualified types
If you are confident that you have got a good grasp of the basic declaration and use
of  pointers  we can continue.  If  not,  it's  important  to  go back over the previous
material  and  make  sure  that  there  is  nothing  in  it  that  you  still  find  obscure;
although what comes next looks more complicated than it really is, there's no need
to make it worse by starting unprepared.

The Standard introduces two things called type qualifiers, neither of which were in
Old C. They can be applied to any declared type to modify its behaviour-hence the
term 'qualifier'-and although one of them can be ignored for the moment (the one
named volatile), the other, const, cannot.

If a declaration is prefixed with the keyword const, then the thing that is declared is
announced to the world as being constant. You must not attempt to modify (change
the value of) const objects, or you get undefined behaviour. Unless you have used
some very dirty tricks, the compiler will know that the thing you are trying to modify
is constant, so it can warn you.

There are two benefits in being able to declare things to be const.

1. It documents the fact that the thing is unmodifiable and the compiler helps to
check.  This  is  especially  reassuring  in  the  case  of  functions  which  take
pointers  as  arguments.  If  the  declaration  of  a  function  shows  that  the
arguments are pointers to constant objects, then you know that the function
is not allowed to change them through the pointers.

2. If  the compiler  knows that  things are  constant,  it  can often do increased
amounts of optimization or generate better code.

Of course, constants are not much use unless you can assign an initial  value to
them. We won't go into the rules about initialization here (they are in  Chapter     6),
but for the moment just note that any declaration can also assign the value of a
constant  expression  to  the  thing  being  declared.  Here  are  some  example
declarations involving const:

const int x = 1;        /* x is constant */
const float f = 3.5;    /* f is constant */
const char y[10];       /* y is an array of 10 const ints */
                        /* don't think about initializing it yet! */

What is more interesting is that pointers can have this qualifier applied in two ways:
either  to  the  thing  that  it  points  to  (pointer  to  const),  or  to  the  pointer  itself
(constant pointer). Here are examples of that:

int i;                  /* i is an ordinary int */
const int ci = 1;       /* ci is a constant int */
int *pi;                /* pi is a pointer to an int */
const int *pci;         /* pc is a pointer to a constant int */
      /* and now the more complicated stuff */
/* cpi is a constant pointer to an int */
int *const cpi = &i;



/* cpci is a constant pointer to an constant int */
const int *const cpci = &ci;

The first declaration (of i) is unsurprising. Next, the declaration of ci shows that it
is a constant integer, and therefore may not be modified. If we didn't initialize it, it
would be pretty well useless.

It isn't hard to understand what a pointer to an integer and a pointer to a constant
integer do-but note that they are different types of pointer now and can't be freely
intermixed. You can change the values of both  pi and  pci (so that they point to
other things); you can change the value of the thing that  pi points to (it's not a
constant integer), but you are only allowed to inspect the value of the thing that pci
points to because that is a constant.

The last two declarations are the most complicated. If the pointers themselves are
constant,  then you are not allowed to make them point somewhere else-so they
need to be initialized, just like ci. Independent of the const or other status of the
pointer itself, naturally the thing that it points to can also be const or non-const,
with the appropriate constraints on what you can do with it.

A final piece of clarification: what constitutes a qualified type? In the example,  ci
was clearly of a qualified type, but pci was not, since the pointer was not qualified,
only the thing that it points to. The only things that had qualified type in that list
were: ci, cpi, and cpci.

Although the declarations do take some mental gymnastics to understand, it just
takes a little time to get used to seeing them, after which you will find that they
seem quite natural. The complications come later when we have to explain whether
or not you are allowed to (say) compare an ordinary pointer with a constant pointer,
and if so, what does it mean? Most of those rules are 'obvious' but they do have to
be stated.

Type qualifiers are given a further airing in Chapter     8.

5.3.4. Pointer arithmetic
Although a more rigorous description of pointer arithmetic is given later, we'll start
with an approximate version that will do for the moment.

Not only can you add an integral value to a pointer, but you can also compare or
subtract two pointers of the same type. They must both point into the same array,
or the result is undefined. The difference between two pointers is defined to be the
number  of  array  elements  separating  them;  the  type  of  this  difference  is
implementation defined and will be one of short,  int, or long. This next example
shows how the difference can be calculated and used, but before you read it, you
need to know an important point.

In an expression the name of an array is  converted to a pointer to
the first element of the array . The only places where that is not true are when



an array name is used in conjunction with sizeof, when a string is used to initialize
an array or when the array name is the subject of the address-of operator (unary &).
We haven't seen any of those cases yet, they will  be discussed later. Here's the
example.

#include <stdio.h>
#include <stdlib.h>
#define ARSZ 10
main(){
      float fa[ARSZ], *fp1, *fp2;
      fp1 = fp2 = fa; /* address of first element */
      while(fp2 != &fa[ARSZ]){
              printf("Difference: %d\n", (int)(fp2-fp1));
              fp2++;
      }
      exit(EXIT_SUCCESS);
}

Example 5.41

The pointer fp2 is stepped along the array, and the difference between its current
and original values is printed. To make sure that printf isn't handed the wrong type
of argument, the difference between the two pointers is forced to be of type int by
using the cast  (int). That allows for machines where the difference between two
pointers is specified to be long.

Unfortunately, if the difference does happen to be long and the array is enormous,
the last example may give the wrong answers. This is a safe version, using a cast to
force a long value to be passed:

#include <stdio.h>
#define ARSZ 10
main(){
      float fa[ARSZ], *fp1, *fp2;
      fp1 = fp2 = fa; /* address of first element */
      while(fp2 != &fa[ARSZ]){
              printf("Difference: %ld\n", (long)(fp2-fp1));
              fp2++;
      }
      return(0);
}

Example 5.42

5.3.5. void, null and dubious pointers
C is careful to keep track of the type of each pointer and will not in general allow
you to use pointers of different types in the same expression. A pointer to char is a
different type of pointer from a pointer to int (say) and you cannot assign one to
the  other,  compare  them,  substitute  one  for  the  other  as  an  argument  to  a



function .... in fact they may even be stored differently in memory and even be of
different lengths.

Pointers  of  different  types are not  the same.  There are no implicit
conversions from one to the other (unlike the arithmetic types) .

There are a few occasions when you do want to be able to sidestep some of those
restrictions, so what can you do?

The solution is to use the special type, introduced for this purpose, of 'pointer to
void'. This is one of the Standard's invented features: before, it was tacitly assumed
that  'pointer  to  char'  was  adequate  for  the  task.  This  has  been  a  reasonably
successful assumption, but was a rather untidy thing to do; the new solution is both
safer and less misleading. There isn't any other use for a pointer of that type-void
* can't actually point to anything-so it improves readability. A pointer of type void *
can  have  the  value  of  any  other  pointer  assigned  to  and  can,  conversely,  be
assigned to any other pointer. This must be used with great care, because you can
end up in some heinous situations.  We'll  see it  being used safely later with the
malloc library function.

You may also on occasion want a pointer that is guaranteed not to point to any
object-the so-called  null  pointer. It's common practice in C to write routines that
return pointers. If,  for some reason, they can't return a valid pointer (perhaps in
case of an error), then they will indicate failure by returning a null pointer instead.
An example could be a table lookup routine, which returns a pointer to the object
searched for if it is in the table, or a null pointer if it is not.

How do you write a null pointer? There are two ways of doing it and both of them
are  equivalent:  either  an  integral  constant  with  the  value  of  0 or  that  value
converted to type void * by using a cast. Both versions are called the null pointer
constant. If you assign a null pointer constant to any other pointer, or compare it for
equality with any other pointer,  then it  is  first  converted the type of  that other
pointer (neatly solving any problems about type compatibility) and will not appear
to have a value that is equal to a pointer to any object in the program.

The only values that can be assigned to pointers apart from 0 are the values of
other pointers of the same type. However, one of the things that makes C a useful
replacement for assembly language is that it allows you to do the sort of things that
most other languages prevent. Try this:

int *ip;
ip = (int *)6;
*ip = 0xFF;

What does that do? The pointer has been initialized to the value of 6 (notice the
cast to turn an integer 6 into a pointer). This is a highly machine-specific operation,
and the bit pattern that ends up in the pointer is quite possibly nothing like the
machine representation of 6. After the initialization, hexadecimal FF is written into



wherever the pointer is pointing. The int at location 6 has had 0xFF written into it-
subject to whatever 'location 6' means on this particular machine.

It may or may not make sense to do that sort of thing; C gives you the power to
express it, it's up to you to get it right. As always, it's possible to do things like this
by accident, too, and to be very surprised by the results.

5.4. Character handling
C is widely used for character and string handling applications. This is odd, in some
ways,  because  the  language  doesn't  really  have  any  built-in  string  handling
features.  If  you're  used  to  languages  that  know about  string  handling,  you  will
almost certainly find C tedious to begin with.

The standard library contains lots of functions to help with string processing but the
fact remains that it still feels like hard work. To compare two strings you have to call
a  function  instead of  using an  equality  operator.  There  is  a  bright  side  to  this,
though.  It  means  that  the  language isn't  burdened by  having  to  support  string
processing directly, which helps to keep it small and less cluttered. What's more,
once you get your string handling programs working in C, they do tend to run very
quickly.

Character handling in C is done by declaring arrays (or allocating them dynamically)
and moving characters  in  and out  of  them 'by hand'.  Here is  an example of  a
program which reads text a line at a time from its standard input. If the line consists
of the string of characters stop, it stops; otherwise it prints the length of the line. It
uses a technique which is invariably used in C programs; it reads the characters into
an array and indicates the end of  them with an extra character  whose value is
explicitly 0 (zero). It uses the library strcmp function to compare two strings.



#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define LINELNG 100     /* max. length of input line */
main(){
      char in_line[LINELNG];
      char *cp;
      int c;
      cp = in_line;
      while((c = getc(stdin)) != EOF){
              if(cp == &in_line[LINELNG-1] || c == '\n'){
                      /*
                       * Insert end-of-line marker
                       */
                      *cp = 0;
                      if(strcmp(in_line, "stop") == 0 )
                              exit(EXIT_SUCCESS);
                      else
                              printf("line was %d characters long\n",
                                      (int)cp-in_line);
                      cp = in_line;
              }
              else
                      *cp++ = c;
      }
      exit(EXIT_SUCCESS);
}

Example 5.43

Once more,  the example illustrates  some interesting methods  used widely  in  C
programs. By far the most important is the way that strings are represented and
manipulated.

Here  is  a  possible  implementation  of  strcmp,  which  compares  two  strings  for
equality and returns zero if they are the same. The library function actually does a
bit more than that, but the added complication can be ignored for the moment.
Notice the use of const in the argument declarations. This shows that the function
will not modify the contents of the strings, but just inspects them. The definitions of
the standard library functions make extensive use of this technique.



/*
* Compare two strings for equality.
* Return 'false' if they are.
*/
int
str_eq(const char *s1, const char *s2){
      while(*s1 == *s2){
              /*
               * At end of string return 0.
               */
              if(*s1 == 0)
                      return(0);
              s1++; s2++;
      }
      /* Difference detected! */
      return(1);
}

Example 5.44

5.4.1. Strings
Every C programmer 'knows' what a string is. It is an array of char variables, with
the  last  character  in  the  string  followed by  a  null.  'But  I  thought  a  string  was
something in double quote marks', you cry. You are right, too. In C, a sequence like
this

"a string"

is  really  a  character  array.  It's  the  only  example  in  C  where  you  can  declare
something at the point of its use.

Be warned: in Old C, strings were stored just like any other character array, and
were modifiable.  Now, the Standard states that  although they are  are  arrays of
char, (not const char), attempting to modify them results in undefined behaviour.

Whenever a string in quotes is seen, it has two effects: it provides a declaration and
a substitute  for  a  name.  It  makes  a  hidden declaration  of  a  char  array,  whose
contents are initialized to the character values in the string, followed by a character
whose integer value is zero. The array has no name. So, apart from the name being
present, we have a situation like this:

char secret[9];
secret[0] = 'a';
secret[1] = ' ';
secret[2] = 's';
secret[3] = 't';
secret[4] = 'r';
secret[5] = 'i';
secret[6] = 'n';
secret[7] = 'g';
secret[8] = 0;



an array of characters, terminated by zero, with character values in it. But when it's
declared using the string notation, it hasn't got a name. How can we use it?

Whenever C sees a quoted string, the presence of the string itself serves as the
name of the hidden array-not only is the string an implicit sort of declaration, it is as
if an array name had been given. Now, we all remember that the name of an array
is equivalent to giving the address of its first element, so what is the type of this?

"a string"

It's a pointer of course: a pointer to the first element of the hidden unnamed array,
which is of type  char, so the pointer is of type 'pointer to  char'. The situation is
shown in Figure  5 .8.

Figure 5.8 - Effect of using a string

For proof of that, look at the following program:

#include <stdio.h>
#include <stdlib.h>
main(){
      int i;
      char *cp;
      cp = "a string";
      while(*cp != 0){
              putchar(*cp);
              cp++;
      }
      putchar('\n');
      for(i = 0; i < 8; i++)
              putchar("a string"[i]);
      putchar('\n');
      exit(EXIT_SUCCESS);
}
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The first loop sets a pointer to the start of the array, then walks along until it finds
the zero at the end. The second one 'knows' about the length of the string and is
less useful as a result. Notice how the first one is independent of the length-that is a
most important point to remember. It's the way that strings are handled in C almost
without exception; it's certainly the format that all of the library string manipulation



functions expect. The zero at the end allows string processing routines to find out
that they have reached the end of the string-look back now to the example function
str_eq. The function takes two character pointers as arguments (so a string would
be  acceptable  as  one  or  both  arguments).  It  compares  them  for  equality  by
checking that the strings are character-for-character the same. If they are the same
at any point, then it checks to make sure it hasn't reached the end of them both
with if(*s1 == 0): if it has, then it returns 0 to show that they were equal. The test
could  just  as  easily  have  been  on  *s2,  it  wouldn't  have  made  any  difference.
Otherwise a difference has been detected, so it returns 1 to indicate failure.

In the example, strcmp is called with two arguments which look quite different. One
is a character array, the other is a string. In fact they're the same thing-a character
array terminated by zero (the program is careful to put a zero in the first 'empty'
element of  in_line), and a string in quotes-which is a character array terminated
by a zero.  Their use as arguments to strcmp results in character pointers being
passed, for the reasons explained to the point of tedium above.

5.4.2. Pointers and increment operators
We said that we'd eventually revisit expressions like

(*p)++;

and now it's time. Pointers are used so often to walk down arrays that it just seems
natural to use the ++ and -- operators on them. Here we write zeros into an array:

#define ARLEN 10
int ar[ARLEN], *ip;
ip = ar;
while(ip < &ar[ARLEN])
      *(ip++) = 0;
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The pointer ip is set to the start of the array. While it remains inside the array, the
place that it points to has zero written into it, then the increment takes effect and
the  pointer  is  stepped  one  element  along  the  array.  The  postfix  form of  ++ is
particularly useful here.

This  is  very  common  stuff  indeed.  In  most  programs  you'll  find  pointers  and
increment operators used together like that, not just once or twice, but on almost
every line (or so it seems while you find them difficult). What is happening, and
what combinations can we get? Well, the * means indirection, and ++ or  -- mean
increment;  either pre-  or post-increment.  The combinations can be pre-  or post-
increment of either the pointer or the thing it points to, depending on where the
brackets are put. Table  5 .14 gives a list.

++(*p) pre-increment thing pointed to



(*p)++ post-increment thing pointed to

*(p++) access via pointer, post-increment pointer

*(++p)
access via pointer which has already been 
incremented

Table 5.14 - Pointer notation

Read it carefully; make sure that you understand the combinations.

The expressions in the list above can usually be understood after a bit of head-
scratching. Now, given that the precedence of *, ++ and -- is the same in all three
cases and that they associate right to left, can you work out what happens if the
brackets are removed? Nasty, isn't it? Table  5 .15 shows that there's only one case
where the brackets have to be there.

With
parentheses

Without, if
possible

++(*p) ++*p

(*p)++ (*p)++

*(p++) *p++

*(++p) *++p

Table 5.15 - More pointer notation

The usual reaction to that horrible sight is to decide that you don't care that the
parentheses can be removed; you will  always use them in your code. That's all
very well but the problem is that most C programmers have learnt the important
precedence rules (or at least learnt the table above) and they very rarely put the
parentheses in. Like them, we don't-so if you want to be able to read the rest of the
examples,  you  had  better  learn  to  read  those  expressions  with  or  without
parentheses. It'll be worth the effort in the end.

5.4.3. Untyped pointers
In  certain  cases  it's  essential  to  be  able  to  convert  pointers  from one  type  to
another. This is always done with the aid of casts, in expressions like the one below:

(type *) expression

The  expression is converted into 'pointer to  type',  regardless of the expression's
previous type. This is only supposed to be done if you're sure that you know what
you're trying to do. It is not a good idea to do much of it until you have got plenty of
experience.  Furthermore,  do  not assume  that  the  cast  simply  suppresses
diagnostics  of  the  'mismatched  pointer'  sort  from  your  compiler.  On  several
architectures  it  is  necessary  to  calculate  new  values  when  pointer  types  are
changed.



There are also some occasions when you will want to use a 'generic' pointer. The
most common example is the  malloc library function, which is  used to allocate
storage for objects that haven't been declared. It is used by telling it how much
storage is wanted-enough for a  float, or an array of  int, or whatever. It passes
back a pointer to enough storage, which it allocates in its own mysterious way from
a pool of free storage (the way that it does this is its own business). That pointer is
then cast into the right type-for example if a float needs 4 bytes of free store, this
is the flavour of what you would write:

float *fp;
fp = (float *)malloc(4);

Malloc finds 4 bytes of store, then the address of that piece of storage is cast into 
pointer-to-float and assigned to the pointer.

What type should malloc be declared to have? The type must be able to represent
every known value of every type of pointer; there is no guarantee that any of the
basic types in C can hold such a value.

The solution is to use the void * type that we've already talked about. Here is the
last example with a declaration of malloc:

void *malloc();
float *fp;
fp = (float *)malloc(4);

The rules for assignment of pointers show that there is no need to use a cast on the
return value from malloc, but it is often done in practice.

Obviously there needs to be a way to find out what value the argument to malloc
should be: it will be different on different machines, so you can't just use a constant
like 4. That is what the sizeof operator is for.

5.5. Sizeof and storage allocation
The sizeof operator returns the size in bytes of its operand. Whether the result of
sizeof is unsigned int or unsigned long is implementation defined-which is why
the  declaration  of  malloc  above  ducked  the  issue  by  omitting  any  parameter
information; normally you would use the  stdlib.h header file to declare  malloc
correctly. Here is the last example done portably:

#include <stdlib.h>     /* declares malloc() */
float *fp;
fp = (float *)malloc(sizeof(float));

The operand of sizeof only has to be parenthesized if it's a type name, as it was in
the  example.  If  you  are  using  the  name  of  a  data  object  instead,  then  the
parentheses can be omitted, but they rarely are.



#include <stdlib.h>
int *ip, ar[100];
ip = (int *)malloc(sizeof ar);

In the last example, the array ar is an array of 100 ints; after the call to malloc
(assuming that it was successful), ip will point to a region of store that can also be
treated as an array of 100 ints.

The fundamental unit of storage in C is the char, and by definition

sizeof(char)

is equal to 1, so you could allocate space for an array of ten chars with

malloc(10)

while to allocate room for an array of ten ints, you would have to use

malloc(sizeof(int[10]))

If malloc can't find enough free space to satisfy a request it returns a null pointer to
indicate failure. For historical reasons, the  stdio.h header file contains a defined
constant  called NULL which is  traditionally used to check the return value from
malloc and some other library functions. An explicit  0 or  (void *)0 could equally
well be used.

As a first  illustration of  the use of  malloc,  here's  a program which reads up to
MAXSTRING strings from its input and sort them into alphabetical order using the
library  strcmp routine. The strings are terminated by a '\n' character. The sort is
done by keeping an array  of  pointers  to  the strings and simply exchanging the
pointers until the order is correct. This saves having to copy the strings themselves,
which improves the efficency somewhat.

The example is done first using fixed size arrays, then another version uses malloc
and allocates space for the strings at run time. Unfortunately, the array of pointers
is still fixed in size: a better solution would use a linked list or similar data structure
to store the pointers and would have no fixed arrays at all.  At the moment, we
haven't seen how to do that.

The overall structure is this:

while(number of strings read < MAXSTRING
      && input still remains){
              read next string;
}
sort array of pointers;
print array of pointers;
exit;

A number of functions are used to implement this program:

char *next_string(char *destination)



Read a line of characters terminated by '\n' from the program's input. The first 
MAXLEN-1 characters are written into the array pointed to by destination.
If the first character read is EOF, return a null pointer, otherwise return the 
address of the start of the string (destination). On return, destination always 
points to a null-terminated string.

void sort_arr(const char *p_array[])

P_array[] is an array of pointers to characters. The array can be arbitrarily long; its
end is indicated by the first element containing a null pointer.

Sort_arr sorts the pointers so that the pointers point to strings which are in 
alphabetical order when the array is traversed in index order.

void print_arr(const char *p_array[])

Like sort_arr, but prints the strings in index order.

It will help to understand the examples if you remember that in an expression, an
array's name is converted to the address of its first element. Similarly, for a two-
dimensional array (such as strings below), then the expression strings[1][2] has
type char, but strings[1] has type 'array of char' which is therefore converted to
the address of the first element: it is equivalent to &strings[1][0].



#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAXSTRING       50      /* max no. of strings */
#define MAXLEN          80      /* max length. of strings */
void print_arr(const char *p_array[]);
void sort_arr(const char *p_array[]);
char *next_string(char *destination);
main(){
      /* leave room for null at end */
      char *p_array[MAXSTRING+1];
      /* storage for strings */
      char strings[MAXSTRING][MAXLEN];
      /* count of strings read */
      int nstrings;
      nstrings = 0;
      while(nstrings < MAXSTRING &&
              next_string(strings[nstrings]) != 0){
              p_array[nstrings] = strings[nstrings];
              nstrings++;
      }
      /* terminate p_array */
      p_array[nstrings] = 0;
      sort_arr(p_array);
      print_arr(p_array);
      exit(EXIT_SUCCESS);
}
void print_arr(const char *p_array[]){
      int index;
      for(index = 0; p_array[index] != 0; index++)
              printf("%s\n", p_array[index]);
}
void sort_arr(const char *p_array[]){
      int comp_val, low_index, hi_index;
      const char *tmp;
      for(low_index = 0;
              p_array[low_index] != 0 &&
                              p_array[low_index+1] != 0;
                      low_index++){
              for(hi_index = low_index+1;
                      p_array[hi_index] != 0;
                              hi_index++){
                      comp_val=strcmp(p_array[hi_index],
                              p_array[low_index]);
                      if(comp_val >= 0)
                              continue;
                      /* swap strings */
                      tmp = p_array[hi_index];
                      p_array[hi_index] = p_array[low_index];
                      p_array[low_index] = tmp;
              }
      }



}
char *next_string(char *destination){
      char *cp;
      int c;
      cp = destination;
      while((c = getchar()) != '\n' && c != EOF){
              if(cp-destination < MAXLEN-1)
                      *cp++ = c;
      }
      *cp = 0;
      if(c == EOF && cp == destination)
              return(0);
      return(destination);
}
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It is no accident that next_string returns a pointer. We can now dispense with the
strings array by getting next_string to allocate its own storage.



#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAXSTRING       50      /* max no. of strings */
#define MAXLEN          80      /* max length. of strings */
void print_arr(const char *p_array[]);
void sort_arr(const char *p_array[]);
char *next_string(void);
main(){
      char *p_array[MAXSTRING+1];
      int nstrings;
      nstrings = 0;
      while(nstrings < MAXSTRING &&
              (p_array[nstrings] = next_string()) != 0){
              nstrings++;
      }
      /* terminate p_array */
      p_array[nstrings] = 0;
      sort_arr(p_array);
      print_arr(p_array);
      exit(EXIT_SUCCESS);
}
void print_arr(const char *p_array[]){
      int index;
      for(index = 0; p_array[index] != 0; index++)
              printf("%s\n", p_array[index]);
}
void sort_arr(const char *p_array[]){
      int comp_val, low_index, hi_index;
      const char *tmp;
      for(low_index = 0;
              p_array[low_index] != 0 &&
                      p_array[low_index+1] != 0;
                      low_index++){
              for(hi_index = low_index+1;
                      p_array[hi_index] != 0;
                              hi_index++){
                      comp_val=strcmp(p_array[hi_index],
                              p_array[low_index]);
                      if(comp_val >= 0)
                              continue;
                      /* swap strings */
                      tmp = p_array[hi_index];
                      p_array[hi_index] = p_array[low_index];
                      p_array[low_index] = tmp;
              }
      }
}
char *next_string(void){
      char *cp, *destination;
      int c;
      destination = (char *)malloc(MAXLEN);



      if(destination != 0){
              cp = destination;
              while((c = getchar()) != '\n' && c != EOF){
                      if(cp-destination < MAXLEN-1)
                              *cp++ = c;
              }
              *cp = 0;
              if(c == EOF && cp == destination)
                      return(0);
      }
      return(destination);
}
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Finally, for the extremely brave, here is the whole thing with even p_array allocated
using  malloc.  Further,  most  of  the  array  indexing  is  rewritten  to  use  pointer
notation.  If  you  are  feeling  queasy,  skip  this  example.  It  is  hard.  One  word  of
explanation:  char  **p means  a  pointer  to  a  pointer  to  a  character.  Many  C
programmers find this hard to deal with.



#include <stdio.h>
#include <stdlib.hi>
#include <string.h>
#define MAXSTRING       50      /* max no. of strings */
#define MAXLEN          80      /* max length. of strings */
void print_arr(const char **p_array);
void sort_arr(const char **p_array);
char *next_string(void);
main(){
      char **p_array;
      int nstrings;   /* count of strings read */
      p_array = (char **)malloc(
                      sizeof(char *[MAXSTRING+1]));
      if(p_array == 0){
              printf("No memory\n");
              exit(EXIT_FAILURE);
      }
      nstrings = 0;
      while(nstrings < MAXSTRING &&
              (p_array[nstrings] = next_string()) != 0){
              nstrings++;
      }
      /* terminate p_array */
      p_array[nstrings] = 0;
      sort_arr(p_array);
      print_arr(p_array);
      exit(EXIT_SUCCESS);
}
void print_arr(const char **p_array){
      while(*p_array)
              printf("%s\n", *p_array++);
}
void sort_arr(const char **p_array){
      const char **lo_p, **hi_p, *tmp;
      for(lo_p = p_array;
              *lo_p != 0 && *(lo_p+1) != 0;
                                      lo_p++){
              for(hi_p = lo_p+1; *hi_p != 0; hi_p++){
                      if(strcmp(*hi_p, *lo_p) >= 0)
                              continue;
                      /* swap strings */
                      tmp = *hi_p;
                      *hi_p = *lo_p;
                      *lo_p = tmp;
              }
      }
}
char *next_string(void){
      char *cp, *destination;
      int c;
      destination = (char *)malloc(MAXLEN);
      if(destination != 0){



              cp = destination;
              while((c = getchar()) != '\n' && c != EOF){
                      if(cp-destination < MAXLEN-1)
                              *cp++ = c;
              }
              *cp = 0;
              if(c == EOF && cp == destination)
                      return(0);
      }
      return(destination);
}
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To further illustrate the use of malloc, another example program follows which can
cope with arbitrarily long strings. It simply reads strings from its standard input,
looking for a newline character to mark the end of the string, then prints the string
on its standard output. It stops when it detects end-of-file. The characters are put
into an array,  the end of  the string being indicated (as always)  by a zero.  The
newline is not stored, but used to detect when a full line of input should be printed
on the output. The program doesn't know how long the string will be, so it starts by
allocating ten characters-enough for a short string.

If the string is more than ten characters long, malloc is called to allocate room for
the current string plus ten more characters. The current characters are copied into
the new space, the old storage previously allocated is released and the program
continues using the new storage.

To release storage allocated by  malloc,  the library function  free is used. If  you
don't release storage when it isn't needed any more, it just hangs around taking up
space. Using free allows it to be 'given away', or at least re-used later.

The program reports errors by using  fprintf, a close cousin of  printf. The only
difference between them is that fprintf  takes an additional  first  argument which
indicates where its output should go. There are two constants of the right type for
this  purpose  defined  in  stdio.h.  Using  stdout indicates  that  the  program's
standard  output  is  to  be  used;  stderr refers  to  the  program's  standard  error
stream. On some systems both may be the same, but other systems do make the
distinction.



#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define GROW_BY 10      /* string grows by 10 chars */
main(){
      char *str_p, *next_p, *tmp_p;
      int ch, need, chars_read;
      if(GROW_BY < 2){
              fprintf(stderr,
                      "Growth constant too small\n");
              exit(EXIT_FAILURE);
      }
      str_p = (char *)malloc(GROW_BY);
      if(str_p == NULL){
              fprintf(stderr,"No initial store\n");
              exit(EXIT_FAILURE);
      }
      next_p = str_p;
      chars_read = 0;
      while((ch = getchar()) != EOF){
              /*
               * Completely restart at each new line.
               * There will always be room for the
               * terminating zero in the string,
               * because of the check further down,
               * unless GROW_BY is less than 2,
               * and that has already been checked.
               */
              if(ch == '\n'){
                      /* indicate end of line */
                      *next_p = 0;
                      printf("%s\n", str_p);
                      free(str_p);
                      chars_read = 0;
                      str_p = (char *)malloc(GROW_BY);
                      if(str_p == NULL){
                              fprintf(stderr,"No initial store\n");
                              exit(EXIT_FAILURE);
                      }
                      next_p = str_p;
                      continue;
              }
              /*
               * Have we reached the end of the current
               * allocation ?
               */
              if(chars_read == GROW_BY-1){
                      *next_p = 0;    /* mark end of string */
                      /*
                       * use pointer subtraction
                       * to find length of
                       * current string.



                       */
                      need = next_p - str_p +1;
                      tmp_p = (char *)malloc(need+GROW_BY);
                      if(tmp_p == NULL){
                              fprintf(stderr,"No more store\n");
                              exit(EXIT_FAILURE);
                      }
                      /*
                       * Copy the string using library.
                       */
                      strcpy(tmp_p, str_p);
                      free(str_p);
                      str_p = tmp_p;
                      /*
                       * and reset next_p, character count
                       */
                      next_p = str_p + need-1;
                      chars_read = 0;
              }
              /*
               * Put character at end of current string.
               */
              *next_p++ = ch;
              chars_read++;
      }
      /*
       * EOF - but do unprinted characters exist?
       */
      if(str_p - next_p){
              *next_p = 0;
              fprintf(stderr,"Incomplete last line\n");
              printf("%s\n", str_p);
      }
      exit(EXIT_SUCCESS);
}
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That may not be a particularly realistic example of how to handle arbitrarily long
strings-for one thing, the maximum storage demand is twice the amount needed
for the longest string-but it does actually work. It also costs rather a lot in terms of
copying  around.  Both  problems  could  be  reduced  by  using  the  library  realloc
function instead.

A more sophisticated method might use a linked list, implemented with the use of
structures, as described in the next chapter.  That would have its drawbacks too
though, because then the standard library routines wouldn't  work for a different
method of storing strings.

5.5.1. What sizeof can't do
One common mistake made by beginners is shown below:



#include <stdio.h>
#include <stdlib.h>
const char arr[] = "hello";
const char *cp = arr;
main(){
      printf("Size of arr %lu\n", (unsigned long)
                      sizeof(arr));
      printf("Size of *cp %lu\n", (unsigned long)
                      sizeof(*cp));
      exit(EXIT_SUCCESS);
}
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The numbers printed will not be the same. The first will, correctly, identify the size
of arr as 6; five characters followed by a null. The second one will always, on every
system, print 1. That's because the type of *cp is const char, which can only have
a size of 1, whereas the type of arr is different: array of const char. The confusion
arises because this is the one place that the use of an array is not converted into a
pointer first.  It  is never possible, using  sizeof,  to find out how long an array a
pointer points to; you must have a genuine array name instead.

5.5.2. The type of sizeof
Now comes the question of just what this does:

sizeof ( sizeof (anything legal) )

That is to say, what type does the result of  sizeof have? The answer is that it is
implementation  defined,  and  will  be  either  unsigned  long or  unsigned  int,
depending on your implementation. There are two safe things to do: either always
cast the return value to unsigned long, as the examples have done, or to use the
defined type size_t provided in the <stddef.h> header file. For example:

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
main(){
      size_t sz;
      sz = sizeof(sz);
      printf("size of sizeof is %lu\n",
              (unsigned long)sz);
      exit(EXIT_SUCCESS);
}
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5.6. Pointers to functions
A useful technique is the ability to have pointers to functions. Their declaration is
easy: write the declaration as it would be for the function, say

int func(int a, float b);



and simply put brackets around the name and a  * in front of it: that declares the
pointer. Because of precedence, if you don't parenthesize the name, you declare a
function returning a pointer:

/* function returning pointer to int */
int *func(int a, float b);
/* pointer to function returning int */
int (*func)(int a, float b);

Once you've got the pointer, you can assign the address of the right sort of function
just by using its name: like an array, a function name is turned into an address when
it's used in an expression. You can call the function using one of two forms:

(*func)(1,2);
/* or */
func(1,2);

The second form has been newly blessed by the Standard. Here's a simple example.

#include <stdio.h>
#include <stdlib.h>
void func(int);
main(){
      void (*fp)(int);
      fp = func;
      (*fp)(1);
      fp(2);
      exit(EXIT_SUCCESS);
}
void
func(int arg){
      printf("%d\n", arg);
}

Example 5.53

If you like writing finite state machines, you might like to know that you can have an
array of pointers to functions, with declaration and use like this:

void (*fparr[])(int, float) = {
                              /* initializers */
                      };
/* then call one */
fparr[5](1, 3.4);

Example 5.54

But we'll draw a veil over it at this point!

5.7. Expressions involving pointers
Because of the introduction of qualified types and of the notion of incomplete types,
together with the use of void *, there are now some complicated rules about how



you can mix pointers and what arithmetic with pointers really permits you to do.
Most people will survive quite well without ever learning this explicitly, because a lot
of it is 'obvious', but we will include it here in case you do want to know. For the final
word in accuracy,  obviously you will  want to see what the Standard says.  What
follows is our interpretation in (hopefully) plainer English.

You don't yet know the Standard means when it talks about objects or incomplete
types. So far we have tended to use the term loosely, but properly speaking an
object is a piece of data storage whose contents is to be interpreted as a value. A
function is  not  an object.  An incomplete type is  one whose name and type are
mostly known, but whose size hasn't yet been determined. You can get these in two
ways:

1. By declaring an array but omitting information about its size:  int x[];. In
that case, there must be additional information given later in a definition for
the array. The type remains incomplete until the later definition.

2. By declaring a structure or union but not defining its contents. The contents
must be defined in a later declaration. The type remains incomplete until the
later declaration.

There will be some more discussion of incomplete types in later chapters.

Now for what you are allowed to do with pointers. Note that wherever we talk about
qualified types they can be qualified with const,  volatile, or both; the examples
are illustrated with const only.

5.7.1. Conversions
Pointers to  void can be freely converted backwards and forwards with pointers to
any object or incomplete type. Converting a pointer to an object or an incomplete
type to void * and then back gives a value which is equal to the original one:

int i;
int *ip;
void *vp;
ip = &i;
vp = ip;
ip = vp;
if(ip != &i)
      printf("Compiler error\n");

An unqualified pointer type may be converted to a qualified pointer type, but the
reverse is not true. The two values will be equal:

int i;
int *ip;
const int *cpi;
ip = &i;
cpi = ip;       /* permitted */
if(cpi != ip)



      printf("Compiler error\n");
ip = cpi;       /* not permitted */

A null pointer constant (see earlier) will not be equal to a pointer to any object or
function.

5.7.2. Arithmetic
Expressions can add (or subtract, which is equivalent to adding negative values)
integral values to the value of a pointer to any object type. The result has the type
of the pointer and if n is added, then the result points n array elements away from
the pointer. The most common use is repeatedly to add 1 to a pointer to step it from
the start to the end of an array, but addition or subtraction of values other than one
is possible.

It the pointer resulting from the addition points in front of the array or past the non-
existent  element  just  after  the  last  element  of  the  array,  then  you  have  had
overflow or underflow and the result is undefined.

The  last-plus-one  element  of  an  array  has  always  been assumed to  be  a  valid
address for a pointer and the Standard confirms this. You mustn't actually access
that element, but the address is guaranteed to exist rather than being an overflow
condition.

We've been careful to use the term 'expression' rather than saying that you actually
add something to the pointer itself. You can do that, but only if the pointer is not
qualified  with  const (of  course).  The  increment  and  decrement  operators  are
equivalent to adding or subtracting 1.

Two pointers to compatible types whether or not qualified may be subtracted. The
result has the type ptrdiff_t, which is defined in the header file <stddef.h>. Both
pointers must point into the same array, or one past the end of the array, otherwise
the behaviour is undefined. The value of the result is the number of array elements
that separate the two pointers. E.g.:

int x[100];
int *pi, *cpi = &x[99]; /* cpi points to the last element of x */
pi = x;
if((cpi - pi) != 99)
      printf("Error\n");
pi = cpi;
pi++;                   /* increment past end of x */
if((pi - cpi) != 1)
      printf("Error\n");

5.7.3. Relational expressions
These allow us to compare pointers with each other. You can only compare

 Pointers to compatible object types with each other

 Pointers to compatible incomplete types with each other



It does not matter if the types that are pointed to are qualified or unqualified.

If two pointers compare equal to each other then they point to the same thing,
whether it is an object or the non-existent element off the end of an array (see
arithmetic, above). If two pointers point to the same thing, then they compare equal
to each other. The relational operators >, <= and so on all give the result that you
would expect if the pointers point into the same array: if one pointer compares less
than another, then it points nearer to the front of the array.

A null pointer constant can be assigned to a pointer; that pointer will then compare
equal to the null pointer constant (which is pretty obvious). A null pointer constant
or a null pointer will not compare equal to a pointer that points to anything which
actually exists.

5.7.4. Assignment
You can use pointers with the assignment operators if the following conditions are
met:

 The  left-hand  operand  is  a  pointer  and  the  right-hand  operand  is  a  null
pointer constant.

 One operand is  a  pointer  to  an object  or  incomplete type;  the other  is  a
pointer to void (whether qualified or not).

 Both of the operands are pointers to compatible types (whether qualified or
not).

In the last two cases, the type pointed to by the left-hand side must have at least
the same qualifiers as the type pointed to by the right-hand side (possibly more).

So, you can assign a pointer to int to a pointer to const int (more qualifiers on the
left than the right) but you cannot assign a pointer to const int to a pointer to int.
If you think about it, it makes sense.

The  += and  -= operators  can involve pointers as long as the left-hand side is a
pointer to an object and the right-hand side is an integral expression. The arithmetic
rules above describe what happens.

5.7.5. Conditional operator
The description of the behaviour of this operator when it is used with pointers has
already been given in Chapter     3.

5.8. Arrays, the & operator and function
We have already emphasized that in most cases, the name of an array is converted
into the address of its first element; one notable exception being when it is the
operand of  sizeof,  which is essential  if  the stuff to do with  malloc is to work.
Another case is when an array name is the operand of the  & address-of operator.
Here,  it  is  converted  into  the  address  of  the  whole  array .  What's  the
difference? Even if you think that addresses would be in some way 'the same', the
critical difference is that they have different types. For an array of n elements of



type T, then the address of the first element has type 'pointer to T'; the address of
the whole array has type 'pointer to array of  n elements of type T'; clearly very
different. Here's an example of it:

int ar[10];
int *ip;
int (*ar10i)[10];       /* pointer to array of 10 ints */
ip = ar;                /* address of first element */
ip = &ar[0];            /* address of first element */
ar10i = &ar;            /* address of whole array */

Where do pointers to arrays matter? Not often, in truth, although of course we know
that declarations that look like multidimensional arrays are really arrays of arrays.
Here is an example which uses that fact, but you'll have to work out what it does for
yourself. It is not common to do this sort of thing in practice:

int ar2d[5][4];
int (*ar4i)[4]; /* pointer to array of 4 ints */
for(ar4i= ar2d; ar4i < &(ar2d[5]); ar4i++)
      (*ar4i)[2] = 0; /* ar2d[n][2] = 0 */

More  important  than  addresses  of  arrays  is  what  happens  when you  declare  a
function that takes an array as an argument. Because of the 'conversion to the
address of its first element' rule, even if you do try to pass an array to a function by
giving its name as an argument, you actually end up passing a pointer to its first
element. The usual rule really does apply in this case! But what if you declare that
the function does have an argument whose type is 'array of something'-like this:

void f(int ar[10]);

What happens? The answer may suprise you slightly. The compiler looks at that and
says to itself 'Ho ho. That's going to be a pointer when the function is called' and
then rewrites the parameter type to be a pointer.  As a result, all  three of these
declarations are identical:

void f(int ar[10]);
void f(int *ar);
void f(int ar[]);       /* since the size of the array is irrelevant! 
*/

Having seen that, your reaction might be to look for a solid object to bang your
head against for a while, but we don't recommend it. Take a grip on yourself instead
and put in the effort to work out:

 Why that is isn't really such a shock
Why, given a function declaration like that, then within the function, expressions of
the form ar[5] and so on work as expected anyhow

Give that last one some thought. When you get to the bottom of it, you really will
have grasped what arrays and pointers are about.



5.9. Summary
You have been introduced to arrays, pointers and the storage allocater. The last of
the topics will prove to be more useful in the next chapter, but the other two are are
central to the language.

You  cannot use C properly without understanding the use of pointers. Arrays are
simple and unsurprising, except for the fact that when it's used in an expression, an
array name usually converts into a pointer to its first element; that often takes time
to sink in.

The  C  approach  to  support  for  strings  often  causes  raised  eyebrows.  The  null-
terminated array of character  model is both powerful  and flexible. The fact that
string manipulation is not built in to the language at first glance seems to rule C out
of  serious  contention  for  character-oriented  work,  yet  that  is  exactly  where  the
language  scores  well  compared  with  the  alternatives,  at  least  when  speed  is
important. All the same, it's hard work for the programmer.

Pointer arithmetic is easy and extremely convenient. It's harder for ex-assembler
programmers to learn, because of the tendency to try to translate it into what they
'know' the machine is doing. However, much harder for people with very low-level
experience is the idea of the non-equivalence of pointers of different types. Try hard
to throw away the idea that pointers contain addresses (in the hardware sense) and
it will repay the effort.

The facility to obtain arbitrary pieces of storage using  malloc and the associated
stuff is extremely important. You might wish to defer it for a while, but don't leave it
for too long. An obvious feature of C programs written by inexperienced users is
their  dependence  on  fixed  size  arrays.  Malloc gives  you  considerably  more
flexibility and is worth the effort to learn about.

The  examples  of  the  use  of  sizeof should  help  to  eliminate  a  few  common
misconceptions about what it does. You may not use it all that often, but when you
do need it, there's no substitute.

5.10. Exercises
Exercise     5.1. What is the valid range of indices for an array of ten objects?

Exercise     5.2. What happens if  you take the address of the 11th member of that
array?

Exercise     5.3. When is it valid to compare the values of two pointers?

Exercise     5.4. What is the use of a pointer to void?

Exercise     5.5. Write functions which:

a. Compare two strings for equality. If they are equal, zero is returned, otherwise
the difference in value between the first two non-matching characters.



b. Find the first occurrence of a specific character in a given string. Return a
pointer to the occurrence in the string, or zero if it is not found.

c. Take two strings as arguments. If the first exists in the second as a substring,
return a pointer to the first occurrence, otherwise zero.

Exercise     5.6. Explain the examples using malloc to somebody else.



Chapter 6: Structured Data Types

6.1. History
The development  of  the early  computer  languages  went  either  one  way or  the
other.  COBOL  concentrated  on  the  structure  of  data  but  not  on  arithmetic  or
algorithms, FORTRAN and Algol leant the other way. Scientific users wanted to do
numeric work on relatively unstructured data (although arrays were soon found to
be indispensable) and commercial users needed only basic arithmetic but knew that
the key issue was the structure of the data.

The  ideas  that  have  influenced C  are  a  mixture  of  the  two schools;  it  has  the
structured control of flow expected in a language of its age, and has also made a
start on data structures. So far we have concentrated on the algorithmic aspects of
the language and haven't thought hard about data storage.  Whilst  it's  true that
arrays fall into the general category of data structuring, they are so simple, and so
commonly in use, that they don't deserve a chapter to themselves. Until now we
have been looking at a kind of block-structured FORTRAN.

The trend in the late 1980s and early '90s seems to be towards integrating both the
data and the algorithms; it's then called Object-Oriented programming. There is no
specific support for that in C. C++ is a language based on C that does offer support
for Object-Oriented techniques, but it is out of our scope to discuss it further.

For a large class of problems in computing, it is the data and not the algorithms that
are the most interesting. If the initial design gets its data structures right, the rest of
the effort in putting a program together is often quite small. However, you need
help from the language. If there is no support for structured data types other than
arrays,  writing programs becomes both less convenient and also more prone to
errors.  It  is  the  job  of  a  good  language  to  do  more  than  just  allow you  to  do
something; it must actively help as well.

C offers arrays, structures and unions as its contribution to data structuring. They
have proved to be entirely  adequate for  most  users'  needs over the years  and
remain essentially unchanged by the Standard.

6.2. Structures
Arrays allow for a named collection of identical objects. This is suitable for a number
of tasks, but isn't really very flexible. Most real data objects are complicated things
with an inherent structure that does not fit well on to array style storage. Let's use a
concrete example.

Imagine that the job is something to do with a typesetting package. In this system,
the  individual  characters  have  not  only  their  character  values  but  also  some
additional attributes like font and point size. The font doesn't affect the character as
such,  but only the way that  it  is  displayed:  this is  the normal  font,  this  is  in
italics and this is  in bold font.  Point size is similar.  It  describes the size of the



characters when they are printed. For example, the point size of this text increases
now. It goes back again now. If our characters have three independent attributes,
how can they be represented in a single object?

With C it's easy. First work out how to represent the individual attributes in the basic
types. Let's assume that we can still store the character itself in a char, that the font
can be encoded into a short (1 for regular, 2 italic, 3 bold etc.) and that the point
size will also fit a short. These are all quite reasonable assumptions. Most systems
only support a few tens of fonts even if they are very sophisticated, and point sizes
are normally in the range 6 to the small hundreds. Below 6 is almost invisible, above
50 is bigger than the biggest newspaper banner headlines. So we have a char and
two shorts that are to be treated as a single entity. Here's how to declare it in C.

struct wp_char{
      char wp_cval;
      short wp_font;
      short wp_psize;
};

That effectively declares a new type of object which can be used in your program.
The  whole  thing is  introduced by the  struct keyword,  which  is  followed by an
optional identifier known as the tag, wp_char in this case. The tag only serves the
purpose of giving a name to this type of structure and allows us to refer to the type
later on. After a declaration like the one just seen, the tag can be used like this:

struct wp_char x, y;

That defines two variables called x and y just as it would have done if the definition
had been

int x, y;

but of course in the first example the variables are of type struct wp_char, and in
the second their type is  int.  The tag is a name for the new type that we have
introduced.

It's worth remembering that structure tags can safely be used as ordinary identifiers
as well. They only mean something special when they are preceded by the keyword
struct. It is quite common to see a structured object being defined with the same
name as its structure tag.

struct wp_char wp_char;

That defines a variable called wp_char of type struct wp_char. This is described by
saying that structure tags have their  own 'name space'  and cannot  collide with
other names.  We'll  investigate tags some more  in the discussion of  'incomplete
types'.

Variables can also be defined immediately following a structure declaration.



struct wp_char{
      char wp_cval;
      short wp_font;
      short wp_psize;
}v1;
struct wp_char v2;

We now have two variables,  v1 and v2. If all the necessary objects are defined at
the end of the structure declaration, the way that  v1 was, then the tag becomes
unneccessary (except if it is needed later for use with sizeof and in casts) and is
often not present.

The two variables are structured objects, each containing three separate members
called  wp_cval,  wp_font and  wp_psize. To access the individual members of the
structures, the 'dot' operator is used:

v1.wp_cval = 'x';
v1.wp_font = 1;
v1.wp_psize = 10;
v2 = v1;

The individual members of v1 are initialized to suitable values, then the whole of v1
is copied into v2 in an assignment.

In fact the only operation permitted on whole structures is assignment: they can be
assigned  to  each  other,  passed  as  arguments  to  functions  and  returned  by
functions. However, it is not a very efficient operation to copy structures and most
programs avoid structure copying by manipulating pointers to structures instead. It
is generally quicker to copy pointers around than structures. A surprising omission
from the language is the facility to compare structures for equality, but there is a
good reason for this which will be mentioned shortly.

Here is an example using an array of structures like the one before. A function is
used  to  read  characters  from  the  program's  standard  input  and  return  an
appropriately initialized structure. When a newline has been read or the array is full,
the structures are sorted into order depending on the character value, and then
printed out.



#include <stdio.h>
#include <stdlib.h>
#define ARSIZE 10
struct wp_char{
      char wp_cval;
      short wp_font;
      short wp_psize;
}ar[ARSIZE];
/*
* type of the input function -
* could equally have been declared above;
* it returns a structure and takes no arguments.
*/
struct wp_char infun(void);
main(){
      int icount, lo_indx, hi_indx;
      for(icount = 0; icount < ARSIZE; icount++){
              ar[icount] = infun();
              if(ar[icount].wp_cval == '\n'){
                      /*
                       * Leave the loop.
                       * not incrementing icount means that the
                       * '\n' is ignored in the sort
                       */
                      break;
              }
      }
      /* now a simple exchange sort */
      for(lo_indx = 0; lo_indx <= icount-2; lo_indx++)
              for(hi_indx = lo_indx+1; hi_indx <= icount-1; hi_indx++)
{
                      if(ar[lo_indx].wp_cval > ar[hi_indx].wp_cval){
                              /*
                               * Swap the two structures.
                               */
                              struct wp_char wp_tmp = ar[lo_indx];
                              ar[lo_indx] = ar[hi_indx];
                              ar[hi_indx] = wp_tmp;
                      }
              }
      /* now print */
      for(lo_indx = 0; lo_indx < icount; lo_indx++){
              printf("%c %d %d\n", ar[lo_indx].wp_cval,
                              ar[lo_indx].wp_font,
                              ar[lo_indx].wp_psize);
      }
      exit(EXIT_SUCCESS);
}
struct wp_char
infun(void){
      struct wp_char wp_char;
      wp_char.wp_cval = getchar();



      wp_char.wp_font = 2;
      wp_char.wp_psize = 10;
      return(wp_char);
}

Example 6.55

Once it is possible to declare structures it seems pretty natural to declare arrays of
them,  use  them  as  members  of  other  structures  and  so  on.  In  fact  the  only
restriction is that a structure cannot contain an example of itself as a member-in
which case its size would be an interesting concept for philosophers to debate, but
hardly useful to a C programmer.

6.2.1. Pointers and structures
If what the last paragraph says is true-that it is more common to use pointers to
structures  than  to  use  the  structures  directly-we  need  to  know  how  to  do  it.
Declaring pointers is easy of course:

struct wp_char *wp_p;

gives us one straight away. But how do we access the members of the structure?
One way might be to look through the pointer to get the whole structure,  then
select the member:

/* get the structure, then select a member */
(*wp_p).wp_cval

that  would  certainly  work  (the  parentheses  are  there  because  .  has  a  higher
precedence than *). It's not an easy notation to work with though, so C introduces a
new operator to clean things up; it is usually known as the 'pointing-to' operator.
Here it is being used:

/* the wp_cval in the structure wp_p points to */
wp_p->wp_cval = 'x';

and although it might not look a lot easier than its alternative, it pays off when the
structure contains pointers, as in a linked list. The pointing-to syntax is much easier
if  you want to follow two or three stages down the links of  a linked list.  If  you
haven't come across linked lists before, you're going to learn a lot more than just
the use of structures before this chapter finishes!

If the thing on the left of the . or -> operator is qualified (with const or volatile)
then the result is also has those qualifiers associated with it. Here it is, illustrated
with pointers; when the pointer points to a qualified type the result that you get is
also qualified:

#include <stdio.h>
#include <stdlib.h>
struct somestruct{
      int i;
};



main(){
      struct somestruct *ssp, s_item;
      const struct somestruct *cssp;
      s_item.i = 1;   /* fine */
      ssp = &s_item;
      ssp->i += 2;    /* fine */
      cssp = &s_item;
      cssp->i = 0;    /* not permitted - cssp points to const objects 
*/
      exit(EXIT_SUCCESS);
}

Not all compiler writers seem to have noticed that requirement-the compiler that we
used to test the last example failed to warn that the final assignment violated a
constraint.

Here is the Example 6.1 rewritten using pointers, and with the input function infun
changed to accept a pointer to a structure rather than returning one. This is much
more likely to be what would be seen in practice.

(It  is  fair  to  say that,  for  a  really efficient  implementation,  even the copying of
structures would probably be dropped, especially if  they were large. Instead,  an
array of pointers would be used, and the pointers exchanged until the sorted data
could be found by traversing the pointer array in index order. That would complicate
things too much for a simple example.)



#include <stdio.h>
#include <stdlib.h>
#define ARSIZE 10
struct wp_char{
      char wp_cval;
      short wp_font;
      short wp_psize;
}ar[ARSIZE];
void infun(struct wp_char *);
main(){
      struct wp_char wp_tmp, *lo_indx, *hi_indx, *in_p;
      for(in_p = ar; in_p < &ar[ARSIZE]; in_p++){
              infun(in_p);
              if(in_p->wp_cval == '\n'){
                      /*
                       * Leave the loop.
                       * not incrementing in_p means that the
                       * '\n' is ignored in the sort
                       */
                      break;
              }
      }
      /*
       * Now a simple exchange sort.
       * We must be careful to avoid the danger of pointer underflow,
       * so check that there are at least two entries to sort.
       */
      if(in_p-ar > 1) for(lo_indx = ar; lo_indx <= in_p-2; lo_indx++){
              for(hi_indx = lo_indx+1; hi_indx <= in_p-1; hi_indx++){
                      if(lo_indx->wp_cval > hi_indx->wp_cval){
                              /*
                               * Swap the structures.
                               */
                              struct wp_char wp_tmp = *lo_indx;
                              *lo_indx = *hi_indx;
                              *hi_indx = wp_tmp;
                      }
              }
      }
      /* now print */
      for(lo_indx = ar; lo_indx < in_p; lo_indx++){
              printf("%c %d %d\n", lo_indx->wp_cval,
                              lo_indx->wp_font,
                              lo_indx->wp_psize);
      }
      exit(EXIT_SUCCESS);
}
void
infun( struct wp_char *inp){
      inp->wp_cval = getchar();
      inp->wp_font = 2;
      inp->wp_psize = 10;



      return;
}

Example 6.56

The next issue is to consider what a structure looks like in terms of storage layout.
It's best not to worry about this too much, but it is sometimes useful if you have to
use C to access  record-structured data written by other programs.  The  wp_char
structure will be allocated storage as shown in Figure  6 .9.

Figure 6.9 - Storage Layout of a Structure

The diagram assumes a number of things: that a char takes 1 byte of storage; that
a short needs 2 bytes; and that shorts must be aligned on even byte addresses in
this architecture.  As a result the structure contains an unnamed 1-byte member
inserted by the compiler for architectural reasons. Such addressing restrictions are
quite common and can often result in structures containing 'holes'.

The Standard makes some guarantees about the layout of structures and unions:

 Members of a structure are allocated within the structure in the order of their
appearance in the declaration and have ascending addresses.

 There must not be any padding in front of the first member.

 The address of a structure is the same as the address of its first member,
provided that the appropriate cast is used. Given the previous declaration of
struct wp_char, if item is of type struct wp_char, then (char *)item ==
&item.wp_cval.

 Bit  fields  (see  Section     6.4)  don't  actually  have  addresses,  but  are
conceptually packed into units which obey the rules above.

6.2.2. Linked lists and other structures
The  combination  of  structures  and  pointers  opens  up  a  lot  of  interesting
possibilities. This is not a textbook on complex linked data structures, but it will go
on to describe two very common examples of the breed: linked lists and trees. Both
have a feature in common: they consist of structures containing pointers to other
structures, all the structures typically being of the same type. Figure  6 .10 shows a
picture of a linked list.

Figure 6.10 - List linked by pointers



The sort of declaration needed for that is this:

struct list_ele{
      int data;       /* or whatever you like here */
      struct list_ele *ele_p;
};

Now, at first glance, it seems to contain itself-which is forbidden-but in fact it only
contains a pointer to itself. How come the pointer declaration is allowed? Well, by
the time the compiler reaches the pointer declaration it already knows that there is
such a thing as a  struct list_ele so the declaration is permitted. In fact, it is
possible to make a incomplete declaration of a structure by saying

struct list_ele;

at  some  point  before  the  full  declaration.  A  declaration  like  that  declares  an
incomplete  type.  This  will  allow  the  declaration  of  pointers  before  the  full
declaration is seen. It is also important in the case of cross-referencing structures
where each must contain a pointer to the other, as shown in the following example.

struct s_1;     /* incomplete type */
struct s_2{
      int something;
      struct s_1 *sp;
};
struct s_1{     /* now the full declaration */
      float something;
      struct s_2 *sp;
};

Example 6.57

This illustrates the need for incomplete types. It also illustrates an important thing
about the names of structure members: they inhabit a name-space per structure, so
element  names  can  be  the  same  in  different  structures  without  causing  any
problems.

Incomplete types may only be used where the size of the structure isn't needed yet.
A full declaration must have been given by the time that the size is used. The later
full  declaration  mustn't  be  in  an  inner  block  because  then  it  becomes  a  new
declaration of a different structure.



struct x;       /* incomplete type */
/* valid uses of the tag */
struct x *p, func(void);
void f1(void){
      struct x{int i;};       /* redeclaration! */
}
/* full declaration now */
struct x{
      float f;
}s_x;
void f2(void){
      /* valid statements */
      p = &s_x;
      *p = func();
      s_x = func();
}
struct x
func(void){
      struct x tmp;
      tmp.f = 0;
      return (tmp);
}
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There's one thing to watch out for: you get a incomplete type of a structure simply
by mentioning its name! That means that this works:

struct abc{ struct xyz *p;};
      /* the incomplete type 'struct xyz' now declared */
struct xyz{ struct abc *p;};
      /* the incomplete type is now completed */

There's a horrible danger in the last example, though, as this shows:

struct xyz{float x;} var1;
main(){
      struct abc{ struct xyz *p;} var2;
      /* AAAGH - struct xyz REDECLARED */
      struct xyz{ struct abc *p;} var3;
}

The result is that  var2.p can hold the address of  var1, but emphatically not the
address of var3 which is of a different type! It can be fixed (assuming that it's not
what you wanted) like this:

struct xyz{float x;} var1;
main(){
      struct xyz;     /* new incomplete type 'struct xyz' */
      struct abc{ struct xyz *p;} var2;
      struct xyz{ struct abc *p;} var3;
}



The type of a structure or union is completed when the closing } of its declaration is
seen; it must contain at least one member or the behaviour is undefined.

The  other  principal  way  to  get  incomplete  types  is  to  declare  arrays  without
specifying their size-their type is incomplete until a later declaration provides the
missing information:

int ar[];       /* incomplete type */
int ar[5];      /* completes the type */

If  you  try  that  out,  it  will  only  work  if  the  declarations  are  outside  any  blocks
(external declarations), but that's for other reasons.

Back to the linked list. There were three elements linked into the list, which could
have been built like this:

struct list_ele{
      int data;
      struct list_ele *pointer;
}ar[3];
main(){
      ar[0].data = 5;
      ar[0].pointer = &ar[1];
      ar[1].data = 99;
      ar[1].pointer = &ar[2];
      ar[2].data = -7;
      ar[2].pointer = 0;      /* mark end of list */
      return(0);
}
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and the contents of the list can be printed in two ways. The array can be traversed
in order of index, or the pointers can be used as in the following example.



#include <stdio.h>
#include <stdlib.h>
struct list_ele{
      int data;
      struct list_ele *pointer;
}ar[3];
main(){
      struct list_ele *lp;
      ar[0].data = 5;
      ar[0].pointer = &ar[1];
      ar[1].data = 99;
      ar[1].pointer = &ar[2];
      ar[2].data = -7;
      ar[2].pointer = 0;      /* mark end of list */
      /* follow pointers */
      lp = ar;
      while(lp){
              printf("contents %d\n", lp->data);
              lp = lp->pointer;
      }
      exit(EXIT_SUCCESS);
}
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It's the way that the pointers are followed which makes the example interesting.
Notice how the pointer in each element is used to refer to the next one, until the
pointer whose value is  0 is found. That value causes the  while loop to stop. Of
course the pointers can be arranged in any order at all, which is what makes the list
such a flexible structure. Here is a function which could be included as part of the
last program to sort the linked list into numeric order of its data fields. It rearranges
the pointers so that the list, when traversed in pointer sequence, is found to be in
order. It is important to note that the data itself is not copied. The function must
return a pointer to the head of the list, because that is not necessarily at ar[0] any
more.



struct list_ele *
sortfun( struct list_ele *list )
{
      int exchange;
      struct list_ele *nextp, *thisp, dummy;
      /*
       * Algorithm is this:
       * Repeatedly scan list.
       * If two list items are out of order,
       * link them in the other way round.
       * Stop if a full pass is made and no
       * exchanges are required.
       * The whole business is confused by
       * working one element behind the
       * first one of interest.
       * This is because of the simple mechanics of
       * linking and unlinking elements.
       */
      dummy.pointer = list;
      do{
              exchange = 0;
              thisp = &dummy;
              while( (nextp = thisp->pointer)
                      && nextp->pointer){
                      if(nextp->data < nextp->pointer->data){
                              /* exchange */
                              exchange = 1;
                              thisp->pointer = nextp->pointer;
                              nextp->pointer =
                                      thisp->pointer->pointer;
                              thisp->pointer->pointer = nextp;
                      }
                      thisp = thisp->pointer;
              }
      }while(exchange);
      return(dummy.pointer);
}
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Expressions such as thisp->pointer->pointer are commonplace in list processing.
It's worth making sure that you understand it; the notation emphasizes the way that
links are followed.

6.2.3. Trees
Another  very  popular  data  structure  is  the  tree.  It's  actually  a  linked  list  with
branches; a common type is the binary tree which has elements (nodes) looking like
this:

struct tree_node{
      int data;



      struct tree_node *left_p, *right_p;
};

For  historical  and essentially  irrelevant  reasons,  trees in computer  science work
upside down. They have their  root node at the top and their  branches spread out
downwards. In Figure  6 .11, the 'data' members of the nodes are replaced by values
which will be used in the discussion that follows.

Figure 6.11 - A tree

Trees may not seem very exciting if  your main interest lies in routine character
handling  and  processing,  but  they  are  extremely  important  to  the  designers  of
databases, compilers and other complex tools.

The advantage of a tree is that, if it is properly arranged, the layout of the data can
support binary searching very simply. It is always possible to add new nodes to a
tree  at  the  appropriate  place  and a  tree  is  basically  a  flexible  and useful  data
structure.

Look at Figure  6 .11. The tree is carefully constructed so that it can be searched to
find whether a given value can be found in the data portions of the nodes. Let's say
we want to find if a value x is already present in the tree. The algorithm is this:

Start at the root of the tree:
if the tree is empty (no nodes)
        then return 'failure'.
else if the data in the current node is equal
        to the value being searched for
        then return 'success'.
else if the data in the current node is greater than the
        value being searched for
        then search the tree indicated by the left pointer
else search the tree indicated by the right pointer.



Here it is in C:



#include <stdio.h>
#include <stdlib.h>
struct tree_node{
      int data;
      struct tree_node *left_p, *right_p;
}tree[7];
/*
* Tree search algorithm.
* Searches for value 'v' in tree,
* returns pointer to first node found containing
* the value otherwise 0.
*/
struct tree_node *
t_search(struct tree_node *root, int v){
      while(root){
              if(root->data == v)
                      return(root);
              if(root->data > v)
                      root = root->left_p;
              else
                      root = root->right_p;
      }
      /* value not found, no tree left */
      return(0);
}
main(){
      /* construct tree by hand */
      struct tree_node *tp, *root_p;
      int i;
      for(i = 0; i < 7; i++){
              int j;
              j = i+1;
              tree[i].data = j;
              if(j == 2 || j == 6){
                      tree[i].left_p = &tree[i-1];
                      tree[i].right_p = &tree[i+1];
              }
      }
      /* root */
      root_p = &tree[3];
      root_p->left_p = &tree[1];
      root_p->right_p = &tree[5];
      /* try the search */
      tp = t_search(root_p, 9);
      if(tp)
              printf("found at position %d\n", tp-tree);
      else
              printf("value not found\n");
      exit(EXIT_SUCCESS);
}
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So that works fine. It is also interesting to note that, given a value, it can always be
inserted at the appropriate point in the tree. The same search algorithm is used,
but, instead of giving up when it finds that the value is not already in the tree, a
new node is allocated by malloc, and is hung on the tree at the very place where
the first null pointer was found. This is a mite more complicated to do because of
the problem of handling the root pointer itself, and so a pointer to a pointer is used.
Read  the  example  carefully;  it  is  not  likely  that  you  ever  find  anything  more
complicated than this in practice. If you can understand it, there is not much that
should worry you about the vast majority of C language programs.



#include <stdio.h>
#include <stdlib.h>
struct tree_node{
      int data;
      struct tree_node *left_p, *right_p;
};
/*
* Tree search algorithm.
* Searches for value 'v' in tree,
* returns pointer to first node found containing
* the value otherwise 0.
*/
struct tree_node *
t_search(struct tree_node *root, int v){
      while(root){
              printf("looking for %d, looking at %d\n",
                      v, root->data);
              if(root->data == v)
                      return(root);
              if(root->data > v)
                      root = root->left_p;
              else
                      root = root->right_p;
      }
      /* value not found, no tree left */
      return(0);
}
/*
* Insert node into tree.
* Return 0 for success,
* 1 for value already in tree,
* 2 for malloc error
*/
int
t_insert(struct tree_node **root, int v){
      while(*root){
              if((*root)->data == v)
                      return(1);
              if((*root)->data > v)
                      root = &((*root)->left_p);
              else
                      root = &((*root)->right_p);
      }
      /* value not found, no tree left */
      if((*root = (struct tree_node *)
              malloc(sizeof (struct tree_node)))
                      == 0)
              return(2);
      (*root)->data = v;
      (*root)->left_p = 0;
      (*root)->right_p = 0;
      return(0);



}
main(){
      /* construct tree by hand */
      struct tree_node *tp, *root_p = 0;
      int i;
      /* we ingore the return value of t_insert */
      t_insert(&root_p, 4);
      t_insert(&root_p, 2);
      t_insert(&root_p, 6);
      t_insert(&root_p, 1);
      t_insert(&root_p, 3);
      t_insert(&root_p, 5);
      t_insert(&root_p, 7);
      /* try the search */
      for(i = 1; i < 9; i++){
              tp = t_search(root_p, i);
              if(tp)
                      printf("%d found\n", i);
              else
                      printf("%d not found\n", i);
      }
      exit(EXIT_SUCCESS);
}
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Finally, the algorithm that allows you to walk along the tree visiting all the nodes in
order is beautiful. It is the cleanest example of recursion that you are likely to see.
Look at it and work out what it does.

void
t_walk(struct tree_node *root_p){
      if(root_p == 0)
              return;
      t_walk(root_p->left_p);
      printf("%d\n", root_p->data);
      t_walk(root_p->right_p);
}
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6.3. Unions
Unions don't take long to explain. They are the same as structures, except that,
where  you would have written  struct before,  now you  write  union.  Everything
works the same way, but with one big exception. In a structure, the members are
allocated  separate  consecutive  chunks  of  storage.  In  a  union,  every  member  is
allocated the same piece of storage. What would you use them for? Well, sometimes
you want a structure to contain different values of different types at different times
but to conserve space as much as possible. Using a union, it's up to you to keep



track of whatever type you put into it and make sure that you retrieve the right type
at the right time. Here's an example:

#include <stdio.h>
#include <stdlib.h>
main(){
      union {
              float u_f;
              int u_i;
      }var;
      var.u_f = 23.5;
      printf("value is %f\n", var.u_f);
      var.u_i = 5;
      printf("value is %d\n", var.u_i);
      exit(EXIT_SUCCESS);
}

Example 6.65

If the example had, say, put a float into the union and then extracted it as an int, a
strange value would have resulted. The two types are  almost certainly not only
stored differently, but of different lengths. The int retrieved would probably be the
low-order bits of the machine representation of a float, and might easily be made
up of part of the mantissa of the float plus a piece of the exponent. The Standard
says that if you do this, the behaviour is implementation defined (not undefined).
The behaviour is defined by the Standard in one case: if some of the members of a
union are structures with a 'common initial sequence' (the first members of each
structure have compatible type and in the case of  bitfields are the same length),
and the union currently contains one of them, then the common initial part of each
can be used interchangeably. Oh good.

The C compiler does no more than work out what the biggest member in a union
can  be  and  allocates  enough  storage  (appropriately  aligned  if  neccessary).  In
particular, no checking is done to make sure that the right sort of use is made of the
members.  That  is  your  task,  and  you'll  soon  find  out  if  you  get  it  wrong.  The
members of a union all  start  at  the same address-there is guaranteed to be no
padding in front of any of them.

The most  common way of  remembering what  is  in  a union is  to  embed it  in  a
structure, with another member of the structure used to indicate the type of thing
currently in the union. Here is how it might be used:



#include <stdio.h>
#include <stdlib.h>
/* code for types in union */
#define FLOAT_TYPE      1
#define CHAR_TYPE       2
#define INT_TYPE        3
struct var_type{
      int type_in_union;
      union{
              float   un_float;
              char    un_char;
              int     un_int;
      }vt_un;
}var_type;
void
print_vt(void){
      switch(var_type.type_in_union){
              default:
                      printf("Unknown type in union\n");
                      break;
              case FLOAT_TYPE:
                      printf("%f\n", var_type.vt_un.un_float);
                      break;
              case CHAR_TYPE:
                      printf("%c\n", var_type.vt_un.un_char);
                      break;
              case INT_TYPE:
                      printf("%d\n", var_type.vt_un.un_int);
                      break;
      }
}
main(){
      var_type.type_in_union = FLOAT_TYPE;
      var_type.vt_un.un_float = 3.5;
      print_vt();
      var_type.type_in_union = CHAR_TYPE;
      var_type.vt_un.un_char = 'a';
      print_vt();
      exit(EXIT_SUCCESS);
}
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That also demonstrates how the dot notation is used to access structures or unions
inside other structures or unions. Some current C compilers allow you to miss bits
out of the names of embedded objects provided that they are not ambiguous. In the
example, such an unambiguous name would be var_type.un_int and the compiler
would  work  out  what  you  meant.  None  the  less  this  is  not  permitted  by  the
Standard.



It  is  because  of  unions  that  structures  cannot  be  compared  for  equality.  The
possibility that a structure might contain a union makes it hard to compare such
structures; the compiler can't tell what the union currently contains and so wouldn't
know how to compare the structures. This sounds a bit hard to swallow and isn't
100% true-most structures don't  contain unions-but there is  also a philosophical
issue at stake about just what is meant by 'equality' when applied to structures.
Anyhow, the union business gives the Standard a good excuse to avoid the issue by
not supporting structure comparison.

6.4. Bitfields
While we're on the subject of structures, we might as well look at bitfields. They can
only be declared inside a structure or a union, and allow you to specify some very
small objects of a given number of bits in length. Their usefulness is limited and
they aren't seen in many programs, but we'll deal with them anyway. This example
should help to make things clear:

struct {
      /* field 4 bits wide */
      unsigned field1 :4;
      /*
       * unnamed 3 bit field
       * unnamed fields allow for padding
       */
      unsigned        :3;
      /*
       * one-bit field
       * can only be 0 or -1 in two's complement!
       */
      signed field2   :1;
      /* align next field on a storage unit */
      unsigned        :0;
      unsigned field3 :6;
}full_of_fields;
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Each field  is  accessed and manipulated  as  if  it  were  an ordinary  member  of  a
structure. The keywords signed and unsigned mean what you would expect, except
that it is interesting to note that a 1-bit signed field on a two's complement machine
can only take the values  0 or  -1.  The declarations are permitted to include the
const and volatile qualifiers.

The main use of bitfields is either to allow tight packing of data or to be able to
specify the fields within some externally produced data files. C gives no guarantee
of the ordering of fields within machine words, so if you do use them for the latter
reason, you program will  not only be non-portable, it will  be compiler-dependent
too. The Standard says that fields are packed into 'storage units', which are typically
machine  words.  The  packing  order,  and  whether  or  not  a  bitfield  may  cross  a



storage unit boundary, are implementation defined. To force alignment to a storage
unit boundary,  a zero width field is used before the one that you want to have
aligned.

Be  careful  using  them.  It  can  require  a  surprising  amount  of  run-time  code  to
manipulate these things and you can end up using more space than they save.

Bit fields do not have addresses-you can't have pointers to them or arrays of them.

6.5. Enums
These fall into the category of 'half baked'. They aren't proper enumerated types, as
in  Pascal,  and  only  really  serve  to  help  you  reduce  the  number  of  #define
statements in your program. They look like this:

enum e_tag{
      a, b, c, d=20, e, f, g=20, h
}var;

Just as with structures and unions, the e_tag is the tag, and var is the definition of a
variable.

The  names declared  inside  the  enumeration  are  constants  with  int type.  Their
values are these:

a == 0
b == 1
c == 2
d == 20
e == 21
f == 22
g == 20
h == 21

so you can see that, in the absence of anything to the contrary, the values assigned
start  at  zero and increase.  A specific value can be given if  you want, when the
increase  will  continue  one  at  a  time afterwards;  the  specific  value  must  be  an
integral constant (see later) that is representable in an int. It is possible for more
than one of the names to have the same value.

The only use for these things is to give a better-scoped version of this:

#define a 0
#define b 1
/* and so on */

It's  better scoped because the declaration of  enumerations follows the standard
scope rules for C, whereas #define statements have file scope.

Not that you are likely to care, but the Standard states that enumeration types are
of a type that is  compatible with an implementation-defined one of  the integral
types. So what? For interest's sake here is an illustration:



enum ee{a,b,c}e_var, *ep;

The names a, b, and c all behave as if they were int constants when you use them;
e_var has  type  enum  ee and  ep is  a  pointer  to  enum  ee.  The  compatibility
requirement means that (amongst other implications) there will be an integral type
whose  address  can  be  assigned  to  ep without  violating  the  type-compatibility
requirements for pointers.

6.6. Qualifiers and derived types
Arrays, structures and unions are 'derived from' (contain) other types; none of them
may be derived from incomplete types. This means that a structure or union cannot
contain  an  example  of  itself,  because  its  own  type  is  incomplete  until  the
declaration  is  complete.  Since  a  pointer  to  an  incomplete  type  is  not  itself  an
incomplete type, it can be used in the derivation of arrays, structures and unions.

If any of the types that these things are derived from are qualified with  const or
volatile,  they do  not inherit  that  qualification.  This  means  that  if  a  structure
contains a const object, the structure itself is not qualified with const and any non-
const members can still be modified. This is what you would expect. However, the
Standard does says that if any derived type contains a type that is qualified with
const (or recursively any inner type does) then it is not modifiable-so a structure
that contains a const cannot be on the left-hand side of an assignment operator.

6.7. Initialization
Now that we have seen all of the data types supported by C, we can look at the
subject of initialization. C allows ordinary variables, structures, unions and arrays to
be given initial values in their definitions. Old C had some strange rules about this,
reflecting an unwillingness by compiler writers to work too hard. The Standard has
rationalized this, and now it is possible to initialize things as and when you want.

There are  basically  two sorts  of  initialization:  at  compile time,  and at  run time.
Which one you get depends on the storage duration of the thing being initialized.

Objects with  static duration are declared either outside functions, or inside them
with the keyword extern or static as part of the declaration. These can only be
initialized at compile time.

Any other object has automatic duration, and can only be initialized at run time. The
two categories are mutually exclusive.

Although  they  are  related,  storage  duration  and  linkage (see  Chapter     4)  are
different and should not be confused.

Compile-time initialization can only be done using  constant expressions; run-time
initialization can be done using  any expression at all. The Old C restriction, that
only simple variables (not arrays, structures or unions) could be initialized at run
time, has been lifted.



6.7.1. Constant expressions
There  are  a  number  of  places  where  constant  expressions  must  be  used.  The
definition of what constitutes a constant expression is relatively simple.

A constant expression is evaluated by the compiler, not at run-time. It may be used
anywhere that a constant may be used. Unless it is part of the operand of sizeof, it
may not contain any assignment, increment or decrement operations, function calls
or comma operators; that may seem odd, but it's because  sizeof only needs to
evaluate the type of an expression, not its value.

If real numbers are evaluated at compile-time, then the Standard insists that they
are evaluated with at least as much precision and range as will be used at run-time.

A more  restricted  form,  called  the  integral  constant  expression exists.  This  has
integral type and only involves operands that are integer constants, enumeration
constants, character constants, sizeof expressions and real constants that are the
immediate  operands  of  casts.  Any  cast  operators  are  only  allowed  to  convert
arithmetic types to integral types. As with the previous note on sizeof expressions,
since they don't have to be evaluated, just their type determined, no restrictions
apply to their contents.

The  arithmetic  constant  expression is  like  the  integral  constant  expression,  but
allows real constants to be used and restricts the use of casts to converting one
arithmetic type to another.

The address constant is a pointer to an object that has static storage duration or a
pointer to a function. You can get these by using the & operator or through the usual
conversions  of  array  and  function  names  into  pointers  when  they  are  used  in
expressions. The operators [], .,  ->, & (address of) and * (pointer dereference) as
well as casts of pointers can all be used in the expression as long as they don't
involve accessing the value of any object.

6.7.2. More initialization
The various types of constants are permitted in various places; integral constant
expressions are particularly important because they are the only type of expression
that may be used to specify the size of arrays and the values in  case statement
prefixes. The types of constants that are permitted in initializer expressions are less
restricted; you are allowed to use: arithmetic constant expressions; null pointer or
address  constants;  an address  constant  for  an object  plus  or  minus an  integral
constant  expression.  Of  course it  depends on the type of  thing being initialized
whether or not a particular type of constant expression is appropriate.

Here is an example using several initialized variables:



#include <stdio.h>
#include <stdlib.h>
#define NMONTHS 12
int month = 0;
short month_days[] =
      {31,28,31,30,31,30,31,31,30,31,30,31};
char *mnames[] ={
      "January", "February",
      "March", "April",
      "May", "June",
      "July", "August",
      "September", "October",
      "November", "December"
};
main(){
      int day_count = month;
      for(day_count = month; day_count < NMONTHS;
              day_count++){
              printf("%d days in %s\n",
                      month_days[day_count],
                      mnames[day_count]);
      }
      exit(EXIT_SUCCESS);
}
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Initializing ordinary variables is easy: put = expression after the variable name in a
declaration, and the variable is initialized to the value of the expression. As with all
objects,  whether  you  can  use  any  expression,  or  just  a  constant  expression,
depends on its storage duration.

Initializing arrays is easy for one-dimensional arrays. Just put a list of the values you
want, separated by commas, inside curly brackets. The example shows how to do it.
If you don't give a size for the array, then the number of initializers will determine
the size. If you do give a size, then there must be at most that many initializers in
the list. Too many is an error, too few will just initialize the first elements of the
array.

You could build up a string like this:

char str[] = {'h', 'e', 'l', 'l', 'o', 0};

but because it is so often necessary to do that, it is also permitted to use a quoted
string literal to initialize an array of chars:

char str[] = "hello";

In that case, the null at the end of the string will also be included if there is room, or
if no size was specified. Here are examples:



/* no room for the null */
char str[5] = "hello";
/* room for the null */
char str[6] = "hello";

The example program used string literals for a different purpose: there they were
being used to initialize an array of character pointers; a very different prospect.

For structures that have automatic duration, an expression of the right type can be
used to initialize them, or else a bracketed list of  constant expressions must be
used:

#include <stdio.h>
#include <stdlib.h>
struct s{
      int a;
      char b;
      char *cp;
}ex_s = {
      1, 'a', "hello"
      };
main(){
      struct s first = ex_s;
      struct s second = {
              2, 'b', "byebye"
              };
      exit(EXIT_SUCCESS);
}
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Only the first member of a union can be initialized.

If a structure or union contains unnamed members, whether unnamed bitfields or
padding for alignment, they are ignored in the initialization process; they don't have
to  be  counted  when  you  provide  the  initializers  for  the  real  members  of  the
structure.

For objects that contain sub-objects within them, there are two ways of writing the
initializer. It can be written out with an initializer for each member:

struct s{
      int a;
      struct ss{
              int c;
              char d;
      }e;
}x[] = {
      1, 2, 'a',
      3, 4, 'b'
      };
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which will assign 1 to x[0].a, 2 to x[0].e.c, a to x[0].e.d and 3 to x[1].a and so
on.

It is much safer to use internal braces to show what you mean, or one missed value
will cause havoc.

struct s{
      int a;
      struct ss{
              int c;
              char d;
      }e;
}x[] = {
      {1, {2, 'a'}},
      {3, {4, 'b'}}
      };

Example 6.71

Always fully bracket initializers-that is much the safest thing to do.

It is the same for arrays as for structures:

float y[4][3] = {
      {1, 3, 5},      /* y[0][0], y[0][1], y[0][2] */
      {2, 4, 6},      /* y[1][0], y[1][1], y[1][2] */
      {3, 5, 7}       /* y[2][0], y[2][1], y[2][2] */
};

Example 6.72

that gives full  initialization to the first  three rows of  y.  The fourth row,  y[3],  is
uninitialized.

Unless they have an explicit  initializer,  all  objects with static  duration are  given
implicit  initializers-the  effect  is  as  if  the constant  0 had  been assigned to  their
components.  This  is  in  fact  widely  used-it  is  an  assumption  made  by  most  C
programs that external objects and internal static objects start with the value zero.

Initialization of objects with automatic duration is only guaranteed if their compound
statement is entered 'at the top'. Jumping into the middle of one may result in the
initialization not happening-this is often undesirable and should be avoided. It  is
explicitly noted by the Standard with regard to switch statements, where providing
initializers in declarations cannot be of any use; this is because a declaration is not
linguistically a 'statement' and only statements may be labelled. As a result it is not
possible for initializers in switch statements ever to be executed, because the entry
to the block containing them must be below the declarations!

A declaration inside a function (block scope) can, using various techniques outlined
in Chapter     4 and Chapter     8, be made to refer to an object that has either external or
internal  linkage.  If  you've managed to do that,  and it's  not  likely to  happen by



accident, then you can't initialize the object as part of that declaration. Here is one
way of trying it:

int x;                        /* external linkage */
main(){
      extern int x = 5;       /* forbidden */
}

Our test compiler didn't notice that one, either.

6.8. Summary
You now understand structures and unions. Bitfields and enumeration types really
are not very important and you could manage quite well without them.

It is hard to emphasize how important is the use of structures, pointers and malloc
in serious programs. If you aren't familiar with the use of structured data in the form
of lists, trees and so on, get a good book now. Better still, try to enrol on a good
course. Except in very specialized applications, it is usually the ability to structure
data well, not the ability to write complicated algorithms, that makes it possible to
construct clean, small and maintainable programs. Experienced software designers
often say that once the right structure of the data has been determined, the rest is
'simple'.

Undoubtedly,  one  of  the  reasons  for  the  popularity  of  C  among  experienced
software specialists is the freedom that it gives in the structuring of data, without
sacrificing speed.

Initialization should not be overlooked. Although simple in concept, it is surprising
how inconvenient many other languages make this.  The ludicrous extreme is to
insist  on  the  use  of  assignment  statements;  C  has  a  practical  and  convenient
approach. If the concept of 'fully bracketed initializers' seems a bit unpleasant, don't
worry. It is rare that you have to do it in practice; all that you need is to know how to
do  simple  initialization  and  to  know  a  book  that  describes  the  more  complex
initialization.  To  get  the  full  low-down  read  the  Standard,  which  is
uncharacteristically penetrable when it discusses the matter; verging at times on
lucidity.

6.9. Exercises
Exercise     6.1. What is the declaration of an untagged structure containing two ints
called a and b?

Exercise     6.2. Why is such a declaration of limited use?

Exercise     6.3. What would the structure look like with a tag of  int_struc and two
variables called x and y of the structure type being defined?

Exercise     6.4. How would you declare a third variable later, with the the same type
as x and y but called z?



Exercise     6.5. Assuming that  p is the right type of pointer, how would you make it
point to z and then set z.a to zero, using the pointer?

Exercise     6.6. What are the two ways of declaring a structure with incomplete type?

Exercise     6.7. What is unusual about a string "like this" when it's used to initialize
a character array?

Exercise     6.8. What if it initializes a char *?

Exercise     6.9. Find  out  what  a  doubly  linked  list  is.  Reimplement  the  linked  list
example using one. Is it any easier to insert and delete elements in a doubly linked
list?



Chapter 7: The Preprocessor

7.1. Effect of the Standard
There's a neither-fish-nor-fowl feel to the preprocessor.  It leads an uncomfortable
existence bolted on to the side of C without the benefit of either integrating properly
with the rest of the language or, given one's natural reaction of revulsion at its ugly
nature,  being something that  you could choose  to do without.  Back in the pre-
history of C it actually was optional and people did write C without it; it's more or
less an accident that it's come to be seen as being part of the bag and baggage of
the C programming environment. It was used to make up for a couple of modest
deficiencies in the language-the definition of constants and the inclusion of standard
definitions-and slipped in through the back door as a result.

There  has  never  been a widely  accepted formal  standard  for  a  lot  of  what  the
preprocessor does and differing versions of it have been implemented in different
systems. As a result, programs using anything other than the very basic features
have proved to be a problem: it's hard to port them.

The primary job of the Standard was to define the behaviour of the preprocessor in
line with common practice; this has been done and will not surprise anyone who
was  familiar  with  Old  C.  The  Standard  has  gone  further,  amid  an  element  of
controversy, and specifies a number of additional features that were pioneered in
some of the preprocessor's more popular dialects. The controversy results from the
fact  that  although  these  features  may  be  useful,  there  has  never  been  much
agreement on how to implement them. On the grounds that programs using these
techniques  were clearly  non-portable  already,  the Standard  has  not  worried too
much about backwards compatibility in these areas. The fact that there is now a
standard for these advanced features should improve the overall  portability of C
programs in the future.

At the simplest level the preprocessor is easy to use and can help a lot to make
programs easy to read and maintain. Using the advanced features is best left to
experts.  In  our  experience,  only  the  very  simplest  use  of  #define and  the
conditional  compilation  #if family are  suitable for beginners.  If  this is your first
encounter with C, read the chapter once to see what you can pick up and use the
exercises to test your basic understanding. Otherwise, we would suggest that at
least six months experience is the minimum prerequisite for a full attack. Because
of  that,  we don't  try  too  hard to give an easy introduction  in  this  chapter,  but
concentrate on getting down to detail.

7.2. How the preprocessor works
Although the preprocessor (Figure  7 .12) is probably going to be implemented as an
integral  part  of  an  Standard  C  compiler,  it  can  equally  well  be  though of  as  a
separate  program  which  transforms  C  source  code  containing  preprocessor
directives into source code with the directives removed.



Figure 7.12 - The preprocessor

It's important to remember that the preprocessor is not working to the same rules
as  the  rest  of  C.  It  works  on  a  line-by-line  basis,  so  the  end  of  a  line  means
something special to it. The rest of C thinks that end-of-line is little different from a
space or tab character.

The preprocessor doesn't know about the scope rules of C. Preprocessor directives
like #define take effect as soon as they are seen and remain in effect until the end
of the file that contains them; the program's block structure is irrelevant. This is one
of the reasons why it's a good idea to make sparing use of these directives. The less
you have in your program that doesn't obey the 'normal' scope rules, the less likely
you are to make mistakes. This is mainly what gives rise to our comments about the
poor level of integration between the preprocessor and the rest of C.

The Standard gives some complicated rules  for  the syntax  of  the preprocessor,
especially with respect to tokens. To understand the operation of the preprocessor
you  need to  know a  little  about  them.  The  text  that  is  being  processed  is  not
considered to be a uniform stream of characters, but is separated into tokens then
processed piecemeal.

For a full definition of the process, it is best to refer to the Standard, but an informal
description follows. Each of the terms used to head the list below is used later in
descriptions of the rules.

1. header-name 
 '<' almost any character '>'

2. preprocessing-token 
 a header-name as above but only when the subject of #include,
 or an identifier which is any C identifier or keyword,

 or a constant which is any integral or floating constant,

 or a string-literal which is a normal C string,

 or an operator which is one of the C operators,

 or one of [ ] ( ) { } * , : = ; ... # (punctuators)

 or any non-white-space character not covered by the list above.

The 'almost any character' above means any character except '>' or newline.

7.3. Directives
Directives are always introduced by a line that starts with a # character, optionally
preceded by white space characters (although it isn't common practice to indent
the #). Table  7 .16 below is a list of the directives defined in the Standard.



Directive Meaning

# include include a source file

# define define a macro

# undef undefine a macro

# if conditional compilation

# ifdef conditional compilation

# ifndef conditional compilation

# elif conditional compilation

# else conditional compilation

# endif conditional compilation

# line control error reporting

# error force an error message

# pragma
used for implementation-
dependent control

# null directive; no effect

Table 7.16 - Preprocessor directives

The meanings and use of these features are described in the following sections.
Make a note that the # and the following keyword, if any, are individual items. They
may be separated by white space.

7.3.1. The null directive
This is simple: a plain # on a line by itself does nothing!

7.3.2. # define
There are two ways of defining macros, one of which looks like a function and one
which does not. Here is an example of each:

#define FMAC(a,b) a here, then b
#define NONFMAC some text here

Both definitions define a macro and some replacement text, which will be used to
replace later occurrences of the macro name in the rest of the program. After those
definitions, they can be used as follows, with the effect of the macro replacement
shown in comments:

NONFMAC
/* some text here */
FMAC(first text, some more)
/* first text here, then some more */



For the non-function macro, its name is simply replaced by its replacement text. The
function macro is also replaced by its replacement text; wherever the replacement
text  contains  an  identifier  which  is  the  name  of  one  of  the  macro's  'formal
parameters', the actual text given as the argument is used in place of the identifier
in the replacement text. The scope of the names of the formal parameters is limited
to the body of the #define directive.

For both forms of macro, leading or trailing white space around the replacement
text is discarded.

A curious ambiguity arises with macros: how do you define a non-function macro
whose replacement text happens to start with the opening parenthesis character (?
The answer is simple. If the definition of the macro has a space in front of the (,
then it  isn't  the definition of  a function macro,  but a simple replacement macro
instead. When you use function-like macros, there's no equivalent restriction.

The Standard allows either type of macro to be redefined at any time, using another
#define, provided that there isn't any attempt to change the type of the macro and
that  the  tokens  making  up  both  the  original  definition  and  the  redefinition  are
identical in number, ordering, spelling and use of white space. In this context all
white space is considered equal, so this would be correct:

# define XXX abc/*comment*/def hij
# define XXX abc def hij

because comment is a form of white space. The token sequence for both cases (w-s
stands for a white-space token) is:

# w-s define w-s XXX w-s abc w-s def w-s hij w-s

7.3.2.1. Macro substitution
Where  will  occurrences  of  the  macro  name  cause  the  replacement  text  to  be
substituted in its  place?  Practically  anywhere in  a program that  the identifier  is
recognized  as  a  separate  token,  except  as  the  identifier  following  the  # of  a
preprocessor directive. You can't do this:

#define define XXX
#define YYY ZZZ

and expect the second #define to be replaced by #XXX, causing an error.

When the identifier associated with a non-function macro is seen, it is replaced by
the macro replacement tokens, then rescanned (see later) for further replacements
to make.

Function macros can be used like real  functions;  white space around the macro
name, the argument list and so on, may include the newline character:

#define FMAC(a, b) printf("%s %s\n", a, b)
FMAC ("hello",
      "sailor"



      );
/* results in */
printf("%s %s\n", "hello", "sailor")

The 'arguments' of a function macro can be almost any arbitrary token sequence.
Commas are used to separate the arguments from each other but can be hidden by
enclosing them within parentheses,  ( and  ). Matched pairs of  ( and  ) inside the
argument list balance each other out, so a ) only ends the invocation of the macro if
the corresponding ( is the one that started the macro invocation.

#define CALL(a, b) a b
CALL(printf, ("%d %d %s\n",1, 24, "urgh"));
/* results in */
printf ("%d %d %s\n",1, 24, "urgh");

Note very carefully that the parentheses around the second argument to CALL were
preserved in the replacement: they were not stripped from the text.

If you want to use macros like printt, taking a variable number of arguments, the
Standard is no help to you. They are not supported.

If any argument contains no preprocessor tokens then the behaviour is undefined.
The same is true if the sequence of preprocessor tokens that forms the argument
would otherwise have been another preprocessor directive:

#define CALL(a, b) a b
/* undefined behaviour in each case.... */
CALL(,hello)
CALL(xyz,
#define abc def)

In our opinion, the second of the erroneous uses of CALL should result in defined
behaviour-anyone capable of writing that would clearly benefit from the attentions
of a champion weightlifter wielding a heavy leather bullwhip.

When a function macro is being processed, the steps are as follows:

1. All of its arguments are identified.
2. Except in the cases listed in item 3 below, if any of the tokens in an argument

are themselves candidates for macro replacement, the replacement is done
until no further replacement is possible. If this introduces commas into the
argument list, there is no danger of the macro suddenly seeming to have a
different number of arguments; the arguments are  only determined in the
step above.

In  the  macro  replacement  text,  identifiers  naming  one  of  the  macro  formal
arguments are replaced by the (by now expanded) token sequence supplied as the
actual argument. The replacement is suppressed only if the identifier is preceded by
one of # or ##, or followed by ##.

7.3.2.2. Stringizing



There is special treatment for places in the macro replacement text where one of
the macro formal parameters is found preceded by #. The token list for the actual
argument has any leading or trailing white space discarded,  then the  # and the
token list  are  turned into a single  string literal.  Spaces  between the tokens are
treated as space characters in the string. To prevent 'unexpected' results, any " or \
characters within the new string literal are preceded by \.

This example demonstrates the feature:

#define MESSAGE(x) printf("Message: %s\n", #x)
MESSAGE (Text with "quotes");
/*
* Result is
* printf("Message: %s\n", "Text with \"quotes\"");
*/

7.3.2.3. Token pasting
A ## operator may occur anywhere in the replacement text for a macro except at
the  beginning  or  end.  If  a  parameter  name  of  a  function  macro  occurs  in  the
replacement text preceded or followed by one of these operators, the actual token
sequence for the corresponding macro argument is used to replace it. Then, for both
function  and  non-function  macros,  the  tokens  surrounding  the  ## operator  are
joined together. If they don't form a valid token, the behaviour is undefined. Then
rescanning occurs.

As  an  example  of  token  pasting,  here  is  a  multi-stage  operation,  involving
rescanning (which is described next).

#define REPLACE some replacement text
#define JOIN(a, b) a ## b
JOIN(REP, LACE)
becomes, after token pasting,
REPLACE
becomes, after rescanning
some replacement text

7.3.2.4. Rescanning
Once the processing described above has occurred, the replacement text plus the
following tokens of the source file is rescanned, looking for more macro names to
replace. The one exception is that, within a macro's replacement text, the name of
the macro itself is not expanded. Because macro replacement can be nested, it is
possible for several macros to be in the process of being replaced at any one point:
none of their names is a candidate for further replacement in the 'inner' levels of
this process. This allows redefinition of existing functions as macros:

#define exit(x) exit((x)+1)

These  macro  names  which  were  not  replaced  now  become  tokens  which  are
immune from future replacement, even if later processing might have meant that



they had become available for replacement. This prevents the danger of infinite
recursion occurring in the preprocessor. The suppression of replacement is only if
the macro name results directly from replacement text, not the other source text
of the program. Here is what we mean:

#define m(x) m((x)+1)
/* so */
m(abc);
/* expands to */
m((abc)+1);
/*
* even though the m((abc)+1) above looks like a macro,
* the rules say it is not to be re-replaced
*/
m(m(abc));
/*
* the outer m( starts a macro invocation,
* but the inner one is replaced first (as above)
* with m((abc)+1), which becomes the argument to the outer call,
* giving us effectively
*/
m(m((abc+1));
/*
* which expands to
*/
m((m((abc+1))+1);

If that doesn't make your brain hurt, then go and read what the Standard says about
it, which will.

7.3.2.5. Notes
There is a subtle problem when using arguments to function macros.

/* warning - subtle problem in this example */
#define SQR(x)  ( x * x )
/*
* Wherever the formal parameters occur in
* the replacement text, they are replaced
* by the actual parameters to the macro.
*/
printf("sqr of %d is %d\n", 2, SQR(2));

The formal parameter of  SQR is  x; the actual argument is  2. The replacement text
results in

printf("sqr of %d is %d\n", 2, ( 2 * 2 ));

The use of the parentheses should be noticed. The following example is likely to
give trouble:

/* bad example */
#define DOUBLE(y) y+y



printf("twice %d is %d\n", 2, DOUBLE(2));
printf("six times %d is %d\n", 2, 3*DOUBLE(2));

The problem is that the last expression in the second printf is replaced by

3*2+2

which results in 8, not 12! The rule is that when using macros to build expressions,
careful parenthesizing is necessary. Here's another example:

SQR(3+4)
/* expands to */
( 3+4 * 3+4 )
/* oh dear, still wrong! */

so, when formal parameters occur in the replacement text, you should look carefully
at them too. Correct versions of SQR and DOUBLE are these:

#define SQR(x) ((x)*(x))
#define DOUBLE(x) ((x)+(x))

Macros have a last little trick to surprise you with, as this shows.

#include <stdio.h>
#include <stdlib.h>
#define DOUBLE(x) ((x)+(x))
main(){
      int a[20], *ip;
      ip = a;
      a[0] = 1;
      a[1] = 2;
      printf("%d\n", DOUBLE(*ip++));
      exit(EXIT_SUCCESS);
}

Example 7.73

Why is this going to cause problems? Because the replacement text of the macro
refers to *ip++ twice, so ip gets incremented twice. Macros should never be used
with expressions that involve side effects, unless you check very carefully that they
are safe.

Despite these warnings, they provide a very useful feature, and one which will be
used a lot from now on.

7.3.3. # undef
The name of any #defined identifier can be forcibly forgotten by saying

#undef  NAME

It isn't an error to #undef a name which isn't currently defined.



This occasionally comes in handy. Chapter     9 points out that some library functions
may  actually  be  macros,  not  functions,  but  by  undefing  their  names  you  are
guaranteed access to a real function.

7.3.4. # include
This comes in two flavours:

#include <filename>
#include "filename"

both of which cause a new file to be read at the point where they occur. It's as if the
single line containing the directive is replaced by the contents of the specified file. If
that file contains erroneous statements, you can reasonably expect that the errors
will be reported with a correct file name and line number. It's the compiler writer's
job to get that right. The Standard specifies that at least eight nested levels of  #
include must be supported.

The effect of using brackets <> or quotes " " around the filename is to change the
places searched to find the specified file. The brackets cause a search of a number
of  implementation  defined  places,  the  quotes  cause  a  search  of  somewhere
associated with the original source file. Your implementation notes must tell you the
specific details of what is meant by 'place'. If the form using quotes can't find the
file, it tries again as if you had used brackets.

In general, brackets are used when you specify standard library header files, quotes
are used for private header files-often specific to one program only.

Although the Standard doesn't define what constitutes a valid file name, it does
specify that there must be an implementation-defined unique way of translating file
names of the form  xxx.x (where  x represents a 'letter'),  into source file names.
Distinctions of upper and lower case may be ignored and the implementation may
choose only to use six significant characters before the '.' character.

You can also write this:

# define NAME <stdio.h>
# include NAME

to get the same effect as

# include <stdio.h>

but  it's  a  rather  roundabout  way  of  doing  it,  and  unfortunately  it's  subject  to
implementation defined rules about how the text between < and > is treated.

It's simpler if the replacement text for NAME comes out to be a string, for example

#define NAME "stdio.h"
#include NAME



There is no problem with implementation defined behaviour here, but the paths
searched are different, as explained above.

For the first case, what happens is that the token sequence which replaces NAME is
(by the rules already given)

<
stdio
.
h
>

and for the second case

"stdio.h"

The second case is easy, since it's just a string-literal which is a legal token for a #
include directive. It is implementation defined how the first case is treated, and
whether or not the sequence of tokens forms a legal header-name.

Finally, the last character of a file which is being included must be a plain newline.
Failure to include a file successfully is treated as an error.

7.3.5. Predefined names
The following names are predefined within the preprocessor:

__LINE__

The current source file line number, a decimal integer constant.

__FILE__

The 'name' of the current source code file, a string literal.

__DATE__

The current date, a string literal. The form is

Apr 21 1990

where the month name is as defined in the library function asctime and the 
first digit of the date is a space if the date is less than 10.

__TIME__

The time of the translation; again a string literal in the form produced by 
asctime, which has the form "hh:mm:ss".

__STDC__

The integer constant 1. This is used to test if the compiler is Standard-
conforming, the intention being that it will have different values for different 
releases of the Standard.



A common way of using these predefined names is the following:

#define TEST(x) if(!(x))\
      printf("test failed, line %d file %s\n",\
              __LINE__, __FILE__)
/**/
TEST(a != 23);
/**/

Example 7.74

If the argument to TEST gives a false result, the message is printed, including the
filename and line number in the message.

There's only one minor caveat: the use of the if statement can cause confusion in a
case like this:

if(expression)
      TEST(expr2);
else
      statement_n;

The else will get associated with the hidden if generated by expanding the  TEST
macro. This is most unlikely to happen in practice, but will be a thorough pain to
track down if it ever does sneak up on you. It's good style to make the bodies of
every control of flow statement compound anyway; then the problem goes away.

None of the names __LINE__, __FILE__, __DATE__, __TIME__, __STDC__ or defined
may be used in #define or #undef directives.

The  Standard  specifies  that  any  other  reserved names will  either  start  with  an
underscore followed by an upper case letter or another underscore, so you know
that you are free to use any other names for your own purposes (but watch out for
additional names reserved in Library header files that you may have included).

7.3.6. #line
This is used to set the value of the built in names __LINE__ and __FILE__. Why do
this?  Because a lot  of  tools  nowadays  actually  generate C as their  output.  This
directive allows them to control the current line number. It is of very limited interest
to the 'ordinary' C programmer.

Its form is

# line number optional-string-literal newline

The number sets the value of __LINE__, the string literal, if present, sets the value
of __FILE__.

In  fact,  the  sequence  of  tokens  following  #line will  be  macro  expanded.  After
expansion, they are expected to provide a valid directive of the right form.



7.3.7. Conditional compilation
A number of  the directives control  conditional  compilation,  which  allows certain
portions  of  a  program  to  be  selectively  compiled  or  ignored  depending  upon
specified conditions. The directives concerned are:  #if,  #ifdef,  #ifndef,  #elif,
#else, #endif together with the preprocessor unary operator defined.

The way that they are used is like this:

#ifdef  NAME
/* compile these lines if NAME is defined */
#endif
#ifndef NAME
/* compile these lines if NAME is not defined */
#else
/* compile these lines if NAME is defined */
#endif

So,  #ifdef and  #endif can be used to test the definition or otherwise of a given
macro name. Of course the #else can be used with #ifdef (and #if or #elif) too.
There  is  no  ambiguity  about  what  a  given  #else binds  to,  because  the  use  of
#endif to delimit the scope of these directives eliminates any possible ambiguity.
The Standard specifies that at least eight levels of nesting of conditional directives
must be supported, but in practice there is not likely to be any real limit.

These directives are most commonly used to select small fragments of C that are
machine specific (when it is not possible to make the whole program completely
machine independent), or sometimes to select different algorithms depending on
the need to make trade-offs.

The  #if and  #elif constructs take a single integral constant expression as their
arguments.  Preprocessor  integral  constant  expressions  are  the  same  as  other
integral constant expressions except that they must not contain cast operators. The
token  sequence  that  makes  up  the  constant  expression  undergoes  macro
replacement,  except  that  names  prefixed  by  defined  are  not  expanded.  In  this
context, the expression defined NAME or defined ( NAME ) evaluates to 1 if NAME
is currently defined, 0 if it is not. Any other identifiers in the expression including
those that are C keywords are replaced with the value 0. Then the expression
is evaluated. The replacement even of keywords means that sizeof can't be used
in these expressions to get the result that you would normally expect.

As with the other conditional statements in C, a resulting value of zero is used to
represent 'false', anything else is 'true'.

The preprocessor always must use arithmetic with at least the ranges defined in the
<limits.h> file and treats int expressions as long int and unsigned int as unsigned
long int. Character constants do not necessarily have the same values as they do at
execution time, so for highly portable programs, it's best to avoid using them in
preprocessor  expressions.  Overall,  the  rules  mean  that  it  is  possible  to  get



arithmetic results from the preprocessor which are different from the results at run
time;  although  presumably  only  if  the  translation  and  execution  are  done  on
different machines. Here's an example.

#include <limits.h>
#if ULONG_MAX+1 != 0
      printf("Preprocessor: ULONG_MAX+1 != 0\n");
#endif
      if(ULONG_MAX+1 != 0)
              printf("Runtime: ULONG_MAX+1 != 0\n");

Example 7.75

It  is  conceivable  that  the  preprocessor  might  perform arithmetic  with  a greater
range than that  used in  the target  environment.  In  that  case,  the preprocessor
expression ULONG_MAX+1 might not 'overflow' to give the result of 0, whereas in the
execution environment, it must.

The following skeleton example illustrates the use of such constants and also the
'conditional else', #elif.

#define NAME    100
#if     ((NAME > 50) && (defined __STDC__))
/* do something */
#elif   NAME > 25
/* do something else*/
#elif   NAME > 10
/* do something else */
#else
/* last possibility */
#endif

A word of warning. These conditional compilation directives do not obey the same
scope rules as the rest of C. They should be used sparingly, unless your program is
rapidly to become unreadable. It is impossible to read C when it is laced with these
things every few lines. The urge to maim the author of a piece of code becomes
very strong when you suddenly come across

#else
      }
#endif

with no #if or whatever immediately visible above. They should be treated like chilli
sauce; essential at times, but more than a tiny sprinkle is too much.

7.3.8. #pragma
This  was  the  Standard  Committee's  way  of  'opening  the  back  door'.  It  allows
implementation-defined  things  to  take  place.  If  the  implementation  was  not
expecting what you wrote (i.e. doesn't recognize it), it is ignored. Here is a possible
example:



#pragma byte_align

which could be used to tell the implementation that all structure members should
be aligned on byte addresses - some processor architectures are able to cope with
word-sized structure members aligned on byte addresses,  but  with a penalty  in
access speed being incurred.

It could, of course, mean anything else that the implementation chooses it to mean.

If your implementation doesn't have any special meaning for this, then it will have
no effect. It will not count as an error.

It will be interesting to see the sort of things that this gets used for.

7.3.9. #error
This directive is followed by one or more tokens at the end of the line. A diagnostic
message is produced by the compiler, which includes those tokens, but no further
detail is given in the Standard. It might be used like this to abort a compilation on
unsuitable hardware:

#include <limits.h>
#if CHAR_MIN > -128
#error character range smaller than required
#endif

which would be expected to produce some sort of meaningful compilation error and
message.

7.4. Summary
To  be  honest,  although  many  of  the  facilities  provided  by  the  preprocessor
undoubtedly provide extra power and flexibility, it really is rather overcomplicated.

There are only a very few aspects that are really important.

The ability to define macros and function macros is very important, being widely
used in almost every C program except the most trivial.

The conditional compilation has two important uses; one is the ability to compile
with or without debugging statements included in a program, the other is to be able
to select machine or application dependent statements.

Obviously, file inclusion is fundamentally important.

Having said the above, most of the rest of the features described in this chapter can
be forgotten with very little loss of functionality. Perhaps each programming team
should have just one preprocessor specialist who has the job of designing project-
dependent macros using the arcane features such as stringizing and token pasting.
Most users of C would benefit much more by putting that learning effort into other
parts  of  the language,  or,  when they fully understand C,  techniques of  software
quality control. The world would be a better place.



7.5. Exercises
These exercises are intended to test only a basic understanding of the preprocessor,
suitable for a beginner. Many users will never need a more detailed understanding.

Exercise     7.1. How would you arrange that the identifier  MAXLEN is replaced by the
value 100 throughout a program?

Exercise     7.2. What is likely to cause problems in a definition of the form  #define
VALUE 100+MAXLEN?

Exercise     7.3. Write  a  macro  called  REM which  takes  two  integer  arguments  and
'returns' the remainder when the first is divided by the second.

Exercise     7.4. Repeat the last example, but use casts so that any arithmetic type of
argument may be used, assuming that there are no overflow problems.

Exercise     7.5. What do the  <> brackets around a filename in a  #include directive
signify?

Exercise     7.6. What would "" mean in place of the <>?

Exercise     7.7. How would you use the preprocessor to select implementation-specific
fragments of a program?

Exercise     7.8. What sort of arithmetic does the preprocessor use?



Chapter 8: Specialized Areas of C

8.1. Government Health Warning
The previous chapters have introduced the fundamentals of the language and have
covered nearly all of the language that the Standard defines. There are a number of
murky and convoluted backwaters  left  unexplored  on  grounds  of  sympathy and
compassion  for  the  sufferer,  and  some  without  any  better  home.  This  chapter
gathers them together-it's the toxic waste dump for the nasty bits of C.

Pull on your rubber gloves, read the following sections and make notes where you
think the material is important to you; re-read them from time to time as well. What
seemed  uninteresting  and  painful  the  first  time  round  may  change  as  your
experience grows, or your natural immunity improves.

What we cover here is not an exhumation of all the pathogenic elements-we leave
that  for  another  book-but  it  does  serve  to  round  up  most  of  the  commonly
encountered difficult or extraordinary material.

8.2. Declarations, Definitions and Accessibility
Chapter     4 introduced the concepts of scope and linkage, showing how they can be
combined  to  control  the  accessibility  of  things  throughout  a  program.  We
deliberately gave a vague description of exactly what constitutes a definition on the
grounds that it would give you more pain than gain at that stage. Eventually it has
to  be  spelled  out  in  detail,  which  we  do  in  this  chapter.  Just  to  make  things
interesting, we need to throw in storage class too.

You'll  probably  find the interactions between these various elements to  be both
complex and confusing: that's because they are! We try to eliminate some of the
confusion  and  give  some  useful  rules  of  thumb  in  Section     8.2.5 below-but  to
understand them, you still need to read the stuff in between at least once.

For  a  full  understanding,  you  need  a  good  grasp  of  three  distinct  but  related
concepts. The Standard calls them:

 duration

 scope

 linkage

and describes what they mean in a fairly readable way (for a standard). Scope and
linkage have already been described in Chapter     4, although we do present a review
of them below.

8.2.1. Storage class specifiers
There are five keywords under the category of storage class specifiers, although one
of  them,  typedef,  is  there more out  of  convenience than utility;  it  has its  own
section  later  since  it  doesn't  really  belong  here.  The  ones  remaining  are  auto,
extern, register, and static.



Storage  class  specifiers  help  you  to  specify  the  type  of  storage  used  for  data
objects.  Only one storage class specifier is permitted in a declaration-this makes
sense, as there is only one way of storing things-and if you omit the storage class
specifier in a declaration, a default is chosen. The default depends on whether the
declaration is made outside a function (external declarations) or inside a function
(internal declarations). For external declarations the default storage class specifier
will be extern and for internal declarations it will be auto. The only exception to
this rule is the declaration of functions, whose  default storage class specifier is
always extern.

The positioning of a declaration, the storage class specifiers used (or their defaults)
and, in some cases, preceding declarations of the same name, can all affect the
linkage of a name, although fortunately not its scope or duration. We will investigate
the easier items first.

8.2.1.1. Duration
The  duration of an object describes whether its storage is allocated once only, at
program start-up, or is more transient in its nature, being allocated and freed as
necessary.

There  are  only  two  types  of  duration  of  objects:  static  duration and  automatic
duration.  Static  duration  means  that  the  object  has  its  storage  allocated
permanently, automatic means that the storage is allocated and freed as necessary.
It's easy to tell which is which: you only get automatic duration if

 the declaration is inside a function

 and the declaration does not contain the static or extern keywords
 and the declaration is not the declaration of a function

(if you work through the rules, you'll find that the formal parameters of a function
always meet all three requirements-they are always 'automatic').

Although the presence of static in a declaration unambiguously ensures that it has
static duration, it's interesting to see that it is by no means the only way. This is a
notorious source of confusion, but we just have to accept it.

Data objects declared inside functions are given the default storage class specifier
of  auto unless some other storage class specifier is used. In the vast majority of
cases, you don't want these objects to be accessible from outside the function, so
you  want  them  to  have  no  linkage.  Either  the  default,  auto,  or  the  explicit
register storage class specifier results in an object with no linkage and automatic
duration. Neither  auto nor  register can be applied to a declaration that occurs
outside a function.

The  register storage class is quite interesting, although it is tending to fall into
disuse nowadays. It suggests to the compiler that it would be a good idea to store
the object in one or more hardware registers in the interests of speed. The compiler



does not have to take any notice of this, but to make things easy for it,  register
variables do not have an address (the & address-of operator is forbidden) because
some computers  don't  support  the  idea  of  addressable  registers.  Declaring  too
many  register objects  may  slow  the  program  down,  rather  than  speed  it  up,
because the compiler may either have to save more registers on entrance to a
function, often a slow process, or there won't be enough registers remaining to be
used for  intermediate  calculations.  Determining when to  use registers  will  be a
machine-specific  choice  and should  only  be  taken when detailed measurements
show that a particular function needs to be speeded up.  Then you will  have to
experiment.  In  our  opinion,  you  should  never  declare  register  variables  during
program  development.  Get  the  program  working  first,  then  measure  it,  then,
maybe, judicious use of registers will give a useful increase in performance. But that
work will have to be repeated for every type of processor you move the program to;
even within one family of processors the characteristics are often different.

A final note on register variables: this is the only storage class specifier that may
be used in a function prototype or function definition. In a function prototype, the
storage class specifier is simply ignored, in a function definition it is a hint that the
actual parameter should be stored in a register if possible. This example shows how
it might be used:

#include <stdio.h>
#include <stdlib.h>
void func(register int arg1, double arg2);
main(){
      func(5, 2);
      exit(EXIT_SUCCESS);
}
/*
* Function illustrating that formal parameters
* may be declared to have register storage class.
*/
void func(register int arg1, double arg2){
      /*
       * Illustrative only - nobody would do this
       * in this context.
       * Cannot take address of arg1, even if you want to
       */
      double *fp = &arg2;
      while(arg1){
              printf("res = %f\n", arg1 * (*fp));
              arg1--;
      }
}

Example 8.76

So, the duration of an object depends on the storage class specifier used, whether
it's a data object or function, and the position (block or file scope) of the declaration



concerned. The linkage is also dependent on the storage class specifier, what kind
of object it is and the scope of the declaration. Table  8 .17 and Table  8 .18 show
the resulting storage duration and apparent linkage for the various combinations of
storage class specifiers and location of the declaration. The actual linkage of objects
with static duration is a bit more complicated, so use these tables only as a guide to
the simple cases and take a look at what we say later about definitions.

Storage Class
Specifier

Function or Data
Object

Linkage
Duratio

n

static either internal static

extern either
probably 
external

static

none function
probably 
external

static

none data object external static

Table 8.17 - External declarations (outside a function)

The table above omits the register and auto storage class specifiers because they
are not permitted in file-scope (external) declarations.

Storage Class
Specifier

Function or Data
Object

Linkage
Duratio

n

register data object only none
automat
ic

auto data object only none
automat
ic

static data object only none static

extern either
probably
external

static

none data object none
automat
ic

none function
probably
external

static

Table 8.18 - Internal declarations

Internal  static variables  retain  their  values  between  calls  of  the  function  that
contains them, which is useful in certain circumstances (see Chapter     4).

8.2.2. Scope



Now we must look again at the scope of the names of objects, which defines when
and where a given name has a particular meaning. The different types of scope are
the following:

 function scope

 file scope

 block scope

 function prototype scope

The easiest is  function scope. This only applies to labels, whose names are visible
throughout the function where they are declared, irrespective of the block structure.
No two labels in the same function may have the same name, but because the
name only  has function scope,  the same name can be used for  labels in  every
function. Labels are not objects-they have no storage associated with them and the
concepts of linkage and duration have no meaning for them.

Any name declared outside a function has file scope, which means that the name is
usable  at  any point  from the declaration  on to  the end of  the source  code file
containing  the  declaration.  Of  course  it  is  possible  for  these  names  to  be
temporarily  hidden  by  declarations  within  compound  statements.  As  we  know,
function definitions  must be outside other functions, so the name introduced by
any function definition will always have file scope.

A name declared inside a  compound statement,  or  as  a formal  parameter  to  a
function, has  block scope and is usable up to the end of the associated  } which
closes the compound statement.  Any declaration of  a  name within a compound
statement  hides  any  outer  declaration  of  the  same  name until  the  end  of  the
compound statement.

A special and rather trivial example of scope is  function prototype scope where a
declaration  of  a  name extends  only  to  the  end of  the  function  prototype.  That
means simply that this is wrong (same name used twice):

void func(int i, int i);

and this is all right:

void func(int i, int j);

The names declared inside the parentheses disappear outside them.

The scope of a name is completely independent of any storage class specifier that
may be used in its declaration.

8.2.3. Linkage
We will briefly review the subject of linkage here, too. Linkage is used to determine
what makes the same name declared in different scopes refer to the same thing. An
object only ever has one name, but in many cases we would like to be able to refer
to the same object from different scopes. A typical example is the wish to be able to



call printf from several different places in a program, even if those places are not
all in the same source file.

The Standard warns that declarations which refer to the same thing must all have
compatible  type,  or  the  behaviour  of  the  program  will  be  undefined.  A  full
description of compatible type is given later;  for the moment you can take it to
mean that, except for the use of the storage class specifier, the declarations must
be identical. It's the responsibility of the programmer to get this right, though there
will probably be tools available to help you check this out.

The three different types of linkage are:

 external linkage

 internal linkage

 no linkage

In an entire program, built up perhaps from a number of source files and libraries, if
a name has external linkage, then every instance of a that name refers to the same
object throughout the program.

For something which has internal linkage, it is only within a given source code file
that instances of the same name will refer to the same thing.

Finally, names with no linkage refer to separate things.

8.2.4. Linkage and definitions
Every data object or function that is actually used in a program (except as the
operand of a  sizeof operator)  must  have  one and only  one corresponding
definition. This is actually very important, although we haven't really come across it
yet because most  of  our  examples have used only  data  objects  with  automatic
duration,  whose declarations are axiomatically definitions,  or functions which we
have defined by providing their bodies.

This 'exactly one' rule means that for objects with external linkage there must be
exactly  one  definition  in  the  whole  program;  for  things  with  internal  linkage
(confined to one source code file) there must be exactly one definition in the file
where  it  is  declared;  for  things  with  no  linkage,  whose  declaration  is  always  a
definition, there is exactly one definition as well.

Now we try to draw everything together. The real questions are

1. How do I get the sort of linkage that I want?
2. What actually constitutes a definition?

We need to look into linkage first, then definitions.

How do you get the appropriate linkage for a particular name? The rules are a little
complicated.

1. A declaration outside a function (file scope) which contains the static storage
class  specifier  results  in  internal  linkage for  that  name.  (The  Standard



requires  that  function  declarations  which  contain  static must be  at  file
scope, outside any block)

2. If  a  declaration  contains  the  extern storage  class  specifier,  or  is  the
declaration of a function with no storage class specifier (or both), then: 

 If there is already a visible declaration of that identifier with file scope,
the resulting linkage is the same as that of the visible declaration;

 otherwise the result is external linkage.
3. If a file scope declaration is neither the declaration of a function nor contains

an explicit storage class specifier, then the result is external linkage.
4. Any other form of declaration results in no linkage.
5. In any one source code file, if a given identifer has both internal and external

linkage then the result is undefined.

These rules were used to derive the 'linkage' columns of Table  8 .17 and Table  8 .
18, without the full application of rule 2-hence the use of the 'probably external'
term. Rule 2 allows you to determine the precise linkage in those cases.

What makes a declaration into a definition?

 Declarations that result in no linkage are also definitions.

 Declarations that include an initializer are always definitions; this includes the
'initialization'  of  functions  by providing their  body.  Declarations  with  block
scope may only have initializers if they also have no linkage.

Otherwise, the declaration of a name with file scope and with either no storage
class specifier or with the static storage class specifier is a tentative definition. If a
source code file contains one or more tentative definitions for an object, then if that
file contains no actual definitions, a default definition is provided for that object as if
it had an initializer of 0. (Structures and arrays have all their elements initialized
to 0). Functions do not have tentative definitions.

A  consequence  of  the  foregoing  is  that  unless  you  also  provide  an  initializer,
declarations that explicitly include the extern storage class specifier do not result in
a definition.

8.2.5. Realistic use of linkage and definitions
The rules that determine the linkage and definition associated with declarations
look quite complicated. The combinations used in practice are nothing like as bad;
so let's investigate the usual cases.

The three types of accessibility that you will want of data objects or functions are:

 throughout the entire program,

 restricted to one source file,

 restricted to one function (or perhaps a single compound statement).

For the three cases above, you will want external linkage, internal linkage, and no
linkage respectively. The recommended practice for the first two cases is to declare
all  of  the  names  in  each  of  the  relevant  source  files  before you  define  any



functions. The recommended layout of a source file would be as shown in Figure  8 .
13.

Figure 8.13 - Layout of a source file

The external linkage declarations would be prefixed with extern, the internal linkage
declarations with static. Here's an example.



/* example of a single source file layout */
#include <stdio.h>
/* Things with external linkage:
* accessible throughout program.
* These are declarations, not definitions, so
* we assume their definition is somewhere else.
*/
extern int important_variable;
extern int library_func(double, int);
/*
* Definitions with external linkage.
*/
extern int ext_int_def = 0;     /* explicit definition */
int tent_ext_int_def;           /* tentative definition */
/*
* Things with internal linkage:
* only accessible inside this file.
* The use of static means that they are also
* tentative definitions.
*/
static int less_important_variable;
static struct{
        int member_1;
        int member_2;
}local_struct;
/*
* Also with internal linkage, but not a tentative
* definition because this is a function.
*/
static void lf(void);
/*
* Definition with internal linkage.
*/
static float int_link_f_def = 5.3;
/*
* Finally definitions of functions within this file
*/
/*
* This function has external linkage and can be called
* from anywhere in the program.
*/
void f1(int a){}
/*
* These two functions can only be invoked by name from
* within this file.
*/
static int local_function(int a1, int a2){
        return(a1 * a2);
}
static void lf(void){
        /*
         * A static variable with no linkage,



         * so usable only within this function.
         * Also a definition (because of no linkage)
         */
        static int count;
        /*
         * Automatic variable with no linkage but
         * an initializer
         */
        int i = 1;
        printf("lf called for time no %d\n", ++count);
}
/*
* Actual definitions are implicitly provided for
* all remaining tentative definitions at the end of
* the file
*/

Example 8.77

We suggest that your re-read the preceding sections to see how the rules have been
applied in Example  8 .77.

8.3. Typedef
Although typedef is thought of as being a storage class, it isn't really. It allows you
to introduce synonyms for types which could have been declared some other way.
The new name becomes equivalent to the type that you wanted, as this example
shows.

typedef int aaa, bbb, ccc;
typedef int ar[15], arr[9][6];
typedef char c, *cp, carr[100];
/* now declare some objects */
/* all ints */
aaa     int1;
bbb     int2;
ccc     int3;
ar      yyy;    /* array of 15 ints */
arr     xxx;    /* 9*6 array of int */
c       ch;     /* a char */
cp      pnt;    /* pointer to char */
carr    chry;   /* array of 100 char */

The general rule with the use of typedef is to write out a declaration as if you were
declaring variables of the types that you want. Where a declaration would have
introduced  names  with  particular  types,  prefixing  the  whole  thing  with  typedef
means that,  instead of  getting variables declared,  you declare  new type names
instead. Those new type names can then be used as the prefix to the declaration of
variables of the new type.

The use of typedef isn't a particularly common sight in most programs; it's typically
found only in header files and is rarely the province of day-to-day coding.



It  is  sometimes found in  applications  requiring very high portability:  there,  new
types  will  be  defined  for  the  basic  variables  of  the  program  and  appropriate
typedefs used to tailor the program to the target machine. This can lead to code
which C programmers from other environments will find difficult to interpret if it's
used to excess. The flavour of it is shown below:

/* file 'mytype.h' */
typedef short   SMALLINT        /* range *******30000 */
typedef int     BIGINT          /* range ******* 2E9 */
/* program */
#include "mytype.h"
SMALLINT        i;
BIGINT          loop_count;

On some machines, the range of an int would not be adequate for a BIGINT which
would have to be re- typedef'd to be long.

To re-use a name already declared as a  typedef, its declaration must include at
least one type specifier, which removes any ambiguity:

typedef int new_thing;
func(new_thing x){
        float new_thing;
        new_thing = x;
}

As a word of warning, typedef can only be used to declare the type of return value
from a function,  not  the overall  type  of  the  function.  The  overall  type includes
information about the function's parameters as well as the type of its return value.

/*
* Using typedef, declare 'func' to have type
* 'function taking two int arguments, returning int'
*/
typedef int func(int, int);
/* ERROR */
func func_name{ /*....*/ }
/* Correct. Returns pointer to a type 'func' */
func *func_name(){ /*....*/ }
/*
* Correct if functions could return functions,
* but C can't.
*/
func func_name(){ /*....*/ }

If a typedef of a particular identifier is in scope, that identifer may not be used as
the formal parameter of a function. This is because something like the following
declaration causes a problem:

typedef int i1_t, i2_t, i3_t, i4_t;
int f(i1_t, i2_t, i3_t, i4_t)/*THIS IS POINT 'X'*/



A compiler reading the function declaration reaches point 'X' and still doesn't know
whether it is looking at a function declaration, essentially similar to

int f(int, int, int, int) /* prototype */

or

int f(a, b, c, d) /* not a prototype */

-the problem is only resolvable (in the worst case) by looking at what follows point
'X';  if  it is a semicolon, then that was a declaration, if  it is a  { then that was a
definition. The rule forbidding typedef names to be formal parameters means that a
compiler can always tell whether it is processing a declaration or a definition by
looking at the first identifier following the function name.

The  use  of  typedef  is  also  valuable  when  you  want  to  declare  things  whose
declaration syntax is painfully impenetrable, like 'array of ten pointers to array of
five integers', which tends to cause panic even amongst the hardy. Hiding it in a
typedef means you only have to read it once and can also help to break it up into
manageable pieces:

typedef int (*a10ptoa5i[10])[5];
/* or */
typedef int a5i[5];
typedef a5i *atenptoa5i[10];

Try it out!

8.4. Const and volatile
These are new in Standard C, although the idea of const has been borrowed from
C++.  Let  us  get  one  thing  straight:  the  concepts  of  const and  volatile are
completely independent. A common misconception is to imagine that somehow
const is  the opposite  of  volatile and vice  versa.  They are  unrelated  and you
should remember the fact.

Since const declarations are the simpler, we'll look at them first, but only after we
have seen where both of these type qualifiers may be used. The complete list of
relevant keywords is

char      long      float     volatile
short     signed    double    void
int       unsigned  const

In that list,  const and  volatile are type qualifiers,  the rest are  type specifiers.
Various combinations of type specifiers are permitted:

char, signed char, unsigned char
int, signed int, unsigned int
short int, signed short int, unsigned short int
long int, signed long int, unsigned long int
float



double
long double

A few points should be noted. All  declarations to do with an  int will  be  signed
anyway,  so  signed  is  redundant  in  that  context.  If  any other  type  specifier  or
qualifier is present, then the int part may be dropped, as that is the default.

The keywords  const and  volatile can be applied to any declaration,  including
those of structures, unions, enumerated types or typedef names. Applying them to
a declaration is called  qualifying the declaration-that's why const and volatile are
called type qualifiers,  rather than type specifiers.  Here are  a few representative
examples:

volatile i;
volatile int j;
const long q;
const volatile unsigned long int rt_clk;
struct{
        const long int li;
        signed char sc;
}volatile vs;

Don't be put off; some of them are deliberately complicated: what they mean will be
explained  later.  Remember  that  they  could  also  be  further  complicated  by
introducing storage class specifications as well! In fact, the truly spectacular

extern const volatile unsigned long int rt_clk;

is a strong possibility in some real-time operating system kernels.

8.4.1. Const
Let's  look at  what  is  meant when  const is  used.  It's  really  quite  simple:  const
means that something is not modifiable, so a data object that is declared with const
as a part of its type specification must not be assigned to in any way during the run
of  a  program.  It  is  very  likely  that  the  definition  of  the  object  will  contain  an
initializer (otherwise, since you can't assign to it, how would it ever get a value?),
but this is not always the case. For example, if you were accessing a hardware port
at a fixed memory address and promised only to read from it,  then it  would be
declared to be const but not initialized.

Taking the address of a data object of a type which isn't const and putting it into a
pointer to the  const-qualified version of the same type is both safe and explicitly
permitted; you will be able to use the pointer to inspect the object, but not modify
it. Putting the address of a const type into a pointer to the unqualified type is much
more dangerous and consequently prohibited (although you can get around this by
using a cast). Here is an example:



#include <stdio.h>
#include <stdlib.h>
main(){
        int i;
        const int ci = 123;
        /* declare a pointer to a const.. */
        const int *cpi;
        /* ordinary pointer to a non-const */
        int *ncpi;
        cpi = &ci;
        ncpi = &i;
        /*
         * this is allowed
         */
        cpi = ncpi;
        /*
         * this needs a cast
         * because it is usually a big mistake,
         * see what it permits below.
         */
        ncpi = (int *)cpi;
        /*
         * now to get undefined behaviour...
         * modify a const through a pointer
         */
        *ncpi = 0;
        exit(EXIT_SUCCESS);
}

Example 8.78

As the  example  shows,  it  is  possible  to  take  the  address  of  a  constant  object,
generate a pointer to a non-constant, then use the new pointer. This is an error in
your program and results in undefined behaviour.

The main intention of introducing const objects was to allow them to be put into
read-only  store,  and  to  permit  compilers  to  do  extra  consistency  checking  in  a
program. Unless you defeat the intent by doing naughty things with pointers,  a
compiler is able to check that const objects are not modified explicitly by the user.

An interesting extra feature pops up now. What does this mean?

char c;
char *const cp = &c;

It's simple really; cp is a pointer to a char, which is exactly what it would be if the
const weren't  there.  The  const means  that  cp is  not  to  be modified,  although
whatever it points to can be-the pointer is constant, not the thing that it points to.
The other way round is

const char *cp;



which means that now cp is an ordinary, modifiable pointer, but the thing that it
points to must not be modified. So, depending on what you choose to do, both the
pointer  and  the  thing  it  points  to  may  be  modifiable  or  not;  just  choose  the
appropriate declaration.

8.4.2. Volatile
After const, we treat volatile. The reason for having this type qualifier is mainly to
do  with  the  problems  that  are  encountered  in  real-time  or  embedded  systems
programming using C. Imagine that you are writing code that controls a hardware
device  by  placing  appropriate  values  in  hardware  registers  at  known  absolute
addresses.

Let's imagine that the device has two registers,  each 16 bits long, at ascending
memory addresses;  the first  one is the control  and status register (csr)  and the
second is a data port. The traditional way of accessing such a device is like this:



/* Standard C example but without const or volatile */
/*
* Declare the device registers
* Whether to use int or short
* is implementation dependent
*/
struct devregs{
        unsigned short  csr;    /* control & status */
        unsigned short  data;   /* data port */
};
/* bit patterns in the csr */
#define ERROR   0x1
#define READY   0x2
#define RESET   0x4
/* absolute address of the device */
#define DEVADDR ((struct devregs *)0xffff0004)
/* number of such devices in system */
#define NDEVS   4
/*
* Busy-wait function to read a byte from device n.
* check range of device number.
* Wait until READY or ERROR
* if no error, read byte, return it
* otherwise reset error, return 0xffff
*/
unsigned int read_dev(unsigned devno){
        struct devregs *dvp = DEVADDR + devno;
        if(devno >= NDEVS)
                return(0xffff);
        while((dvp->csr & (READY | ERROR)) == 0)
                ; /* NULL - wait till done */
        if(dvp->csr & ERROR){
                dvp->csr = RESET;
                return(0xffff);
        }
        return((dvp->data) & 0xff);
}

Example 8.79

The technique of using a structure declaration to describe the device register layout
and names is very common practice. Notice that there aren't actually any objects of
that type defined, so the declaration simply indicates the structure without using up
any store.

To access the device registers, an appropriately cast constant is used as if it were
pointing to such a structure, but of course it points to memory addresses instead.

However, a major problem with previous C compilers would be in the while loop
which tests the status register and waits for the ERROR or READY bit to come on. Any
self-respecting  optimizing  compiler  would  notice  that  the  loop  tests  the  same



memory address over and over again. It would almost certainly arrange to reference
memory once only, and copy the value into a hardware register, thus speeding up
the loop. This is, of course, exactly what we don't want; this is one of the few places
where we must look at the place where the pointer points, every time around the
loop.

Because of this problem, most C compilers have been unable to make that sort of
optimization in the past. To remove the problem (and other similar ones to do with
when to write to where a pointer points), the keyword volatile was introduced. It
tells the compiler that the object is subject to sudden change for reasons which
cannot be predicted from a study of the program itself, and forces every reference
to such an object to be a genuine reference.

Here is how you would rewrite the example, making use of const and volatile to
get what you want.



/*
* Declare the device registers
* Whether to use int or short
* is implementation dependent
*/
struct devregs{
        unsigned short volatile csr;
        unsigned short const volatile data;
};
/* bit patterns in the csr */
#define ERROR   0x1
#define READY   0x2
#define RESET   0x4
/* absolute address of the device */
#define DEVADDR ((struct devregs *)0xffff0004)
/* number of such devices in system */
#define NDEVS   4
/*
* Busy-wait function to read a byte from device n.
* check range of device number.
* Wait until READY or ERROR
* if no error, read byte, return it
* otherwise reset error, return 0xffff
*/
unsigned int read_dev(unsigned devno){
        struct devregs * const dvp = DEVADDR + devno;
        if(devno >= NDEVS)
                return(0xffff);
        while((dvp->csr & (READY | ERROR)) == 0)
                ; /* NULL - wait till done */
        if(dvp->csr & ERROR){
                dvp->csr = RESET;
                return(0xffff);
        }
        return((dvp->data) & 0xff);
}

Example 8.80

The rules about mixing  volatile and regular types resemble those for  const.  A
pointer to a volatile object can be assigned the address of a regular object with
safety, but it is dangerous (and needs a cast) to take the address of a  volatile
object and put it into a pointer to a regular object. Using such a derived pointer
results in undefined behaviour.

If an array, union or structure is declared with const or volatile attributes, then all
of the members take on that attribute too. This makes sense when you think about
it-how could a member of a const structure be modifiable?



That  means  that  an  alternative  rewrite  of  the  last  example  would  be  possible.
Instead of declaring the device registers to be volatile in the structure, the pointer
could have been declared to point to a volatile structure instead, like this:

struct devregs{
      unsigned short  csr;    /* control & status */
      unsigned short  data;   /* data port */
};
volatile struct devregs *const dvp=DEVADDR+devno;

Since  dvp points  to  a  volatile object,  it  not  permitted  to  optimize  references
through the pointer. Our feeling is that, although this would work, it is bad style. The
volatile declaration belongs in the structure: it is the device registers which are
volatile and that is where the information should be kept; it reinforces the fact for
a human reader.

So,  for  any  object  likely  to  be  subject  to  modification  either  by  hardware  or
asynchronous interrupt service routines, the volatile type qualifier is important.

Now, just when you thought that you understood all that, here comes the final twist.
A declaration like this:

volatile struct devregs{
      /* stuff */
}v_decl;

declares  the type  struct devregs and also a  volatile-qualified object  of  that
type, called v_decl. A later declaration like this

struct devregs nv_decl;

declares nv_decl which is not qualified with volatile! The qualification is not part
of the type of struct devregs but applies only to the declaration of v_decl. Look at
it  this  way  round,  which  perhaps  makes  the  situation  more  clear  (the  two
declarations are the same in their effect):

struct devregs{
      /* stuff */
}volatile v_decl;

If you do want to get a shorthand way of attaching a qualifier to another type, you
can use typedef to do it:

struct x{
      int a;
};
typedef const struct x csx;
csx const_sx;
struct x non_const_sx = {1};
const_sx = non_const_sx;        /* error - attempt to modify a const 
*/



8.4.2.1. Indivisible Operations
Those of you who are familiar with techniques that involve hardware interrupts and
other  'real  time'  aspects  of  programming  will  recognise  the  need  for  volatile
types. Related to this area is the need to ensure that accesses to data objects are
'atomic', or uninterruptable. To discuss this is any depth would take us beyond the
scope of this book, but we can at least outline some of the issues.

Be careful not to assume that any operations written in C are uninterruptable. For
example,

extern const volatile unsigned long realtimeclock;

could be a counter which is updated by a clock interrupt routine. It is essential to
make it  volatile because of  the asynchronous  updates to it,  and it  is  marked
const because  it  should  not  be  changed  by  anything  other  than  the  interrupt
routine. If the program accesses it like this:

unsigned long int time_of_day;
time_of_day = real_time_clock;

there may be a problem. What if, to copy one  long into another, it takes several
machine  instructions  to  copy  the  two  words  making  up  real_time_clock and
time_of_day?  It  is  possible  that  an  interrupt  will  occur  in  the  middle  of  the
assignment  and  that  in  the  worst  case,  when  the  low-order  word  of
real_time_clock is 0xffff and the high-order word is 0x0000, then the low-order
word of time_of_day will receive 0xffff. The interrupt arrives and increments the
low-order word of  real_time_clock to  0x0 and then the high-order word to  0x1,
then returns. The rest of the assignment then completes, with time_of_day ending
up  containing  0x0001ffff and  real_time_clock containing  the  correct  value,
0x00010000.

This  whole  class  of  problem is  what  is  known  as  a  critical  region,  and  is  well
understood by those who regularly work in asynchronous environments. It should be
understood that Standard C takes no special precautions to avoid these problems,
and that the usual techniques should be employed.

The header 'signal.h' declares a type called sig_atomic_t which is guaranteed
to be modifiable safely in the presence of asynchronous events. This means only
that it can be modified by assigning a value to it; incrementing or decrementing it,
or anything else which produces a new value depending on its previous value, is not
safe.

8.5. Sequence points
Associated  with,  but  distinct  from,  the  problems  of  real-time  programming  are
sequence points. These are the Standard's attempt to define when certain sorts of
optimization may and may not be permitted to be in effect. For example, look at this
program:



#include <stdio.h>
#include <stdlib.h>
int i_var;
void func(void);
main(){
        while(i_var != 10000){
                func();
                i_var++;
        }
        exit(EXIT_SUCCESS);
}
void
func(void){
        printf("in func, i_var is %d\n", i_var);
}

Example 8.81

The compiler might want to optimize the loop so that  i_var can be stored in a
machine register for speed.  However,  the function needs to have access  to the
correct  value of  i_var so that it  can print the right value.  This means that the
register must be stored back into i_var at each function call (at least). When and
where  these  conditions  must  occur  are  described  by  the  Standard.  At  each
sequence point, the side effects of all previous expressions will be completed. This
is why you cannot rely on expressions such as:

a[i] = i++;

because there is no sequence point specified for the assignment, increment or index
operators, you don't know when the effect of the increment on i occurs.

The sequence points laid down in the Standard are the following:

 The point of calling a function, after evaluating its arguments.

 The end of the first operand of the && operator.
 The end of the first operand of the || operator.
 The end of the first operand of the ?: conditional operator.
 The end of the each operand of the comma operator.

 Completing the evaluation of a full expression. They are the following: 

 Evaluating the initializer of an auto object.
 The expression in an 'ordinary'  statement-an expression followed by

semicolon.
 The controlling expressions in do, while, if, switch or for statements.
 The other two expressions in a for statement.

The expression in a return statement.

8.6. Summary
This is a chapter describing specialized areas of the language.



Undoubtedly, the issues of scope, linkage and duration are important. If you find the
whole topic too much to digest, just learn the simple rules. The problem is that the
Standard tries to be complete and unambiguous, so it has to lay down lots of rules.
It's much easier if you just stick to the easy way of doing things and don't try to get
too clever. Use Example  8 .77 as a model if in doubt.

The use of typedef depends on your level of experience. Its most common use is to
help avoid some of the more unpleasant aspects of complicated type declarations.

The use of  const will be widespread in many programs. The idea of a pointer to
something  which  is  not  modifiable  is  well  and  truly  emphasized  in  the  library
function prototypes.

Only specialized applications will use volatile. If you work in the field of real-time
programming, or embedded systems, this will matter to you. Otherwise it probably
won't. The same goes for sequence points. How well the early compilers will support
these last two features will be a very interesting question.



Chapter 9: Libraries

9.1. Introduction
There is no doubt that the Standard Committee's decision to define a set of library
routines will  prove to be a huge benefit to users of C. Previously there were  no
standard,  accepted,  definitions  of  library  routines  to  provide  support  for  the
language. As a result, portability suffered seriously.

The library routines do not have to be present; they will only be present in a hosted
environment-typically the case for applications programmers. Writers of embedded
systems  and  the  writers  of  the  hosted  environment  libraries  will  not  have  the
libraries present. They are using 'raw' C, in a  freestanding environment, and this
chapter will not be of much interest to them.

The descriptions (except for this introduction) are not meant to be read as a whole
chapter,  but as individual  pieces.  The material  included here is  meant  more for
information and convenient reference than as a full tutorial introduction. It would
take a full book by itself to do real justice to the libraries.

9.1.1. Headers and standard types
A number of  types and macros are  used widely by the library functions.  Where
necessary, they are defined in the appropriate #include file for that function. The
header will also declare appropriate types and prototypes for the library functions.
Some important points should be noted here:

 All  external  identifiers  and  macro  names  declared  in  any  of  the  library
headers are reserved. They must not be used, or redefined, for any other
purpose. In some cases they may be 'magic'-their names may be known to
the compiler and cause it to use special methods to implement them.

 All identifiers that begin with an underscore are reserved.

 Headers may be included in any order,  and more than once, but must be
included outside of any external declaration or definition and before any use
of the functions or macros defined inside them.

 Giving a 'bad value' to a function-say a null pointer, or a value outside the
range  of  values  expected  by  the  function-results  in  undefined  behaviour
unless otherwise stated.

The Standard isn't quite as restrictive about identifiers as the list above is, but it's a
brave move to make use of the loopholes. Play safe instead.

The Standard headers are:

<assert.h>   <locale.h>   <stddef.h>
<ctype.h>    <math.h>     <stdio.h>
<errno.h>    <setjmp.h>   <stdlib.h>
<float.h>    <signal.h>   <string.h>
<limits.h>   <stdarg.h>   <time.h>



A last general point is that many of the library routines may be implemented as
macros,  provided  that  there  will  be  no  problems  to  do  with  side-effects  (as
Chapter     7 describes).  The  Standard  guarantees  that,  if  a  function  is normally
implemented as a macro, there will also be a true function provided to do the same
job.  To  use  the  real  function,  either  undefine  the  macro  name with  #undef,  or
enclose its name in parentheses, which ensures that it won't be treated as a macro:

some function("Might be a macro\n");
(some function)("Can't be a macro\n");

9.1.2. Character set and cultural dependencies
The Committee has introduced features that attempt to cater for the use of C in
environments which are not based on the character set of US ASCII and where there
are cultural dependencies such as the use of comma or full  stop to indicate the
decimal  point.  Facilities  have  been  provided  (see  Section     9.4)  for  setting  a
program's idea of its  locale, which is used to control the behaviour of the library
functions.

Providing full support for different native languages and customs is a difficult and
poorly understood task; the facilities provided by the C library are only a first step
on the road to a full solution.

In several places the 'C locale' is referred to. This is the only locale defined by the
Standard and effectively provides support  for the way that Old C worked. Other
locale settings may provide different behaviour in implementation-defined ways.

9.1.3. The <stddef.h> Header
There are a small number of types and macros, found in  <stddef.h>, which are
widely used in other headers. They are described in the following paragraphs.

Subtracting one pointer from another gives a result  whose type differs between
different implementations. To allow safe use of the difference, the type is defined in
<stddef.h> to be  ptrdiff_t. Similarly, you can use  size_t to store the result of
sizeof.

For reasons which still escape us, there is an 'implementation defined null pointer
constant' defined in <stddef.h> called NULL. Since the language explicitly defines
the integer constant  0 to be the value which can be assigned to, and compared
with,  a  null  pointer,  this  would  seem  to  be  unnecessary.  However,  it  is  very
common practice among experienced C programmers to write this sort of thing:

#include <stdio.h>
#include <stddef.h>
FILE *fp;
if((fp = fopen("somefile", "r")) != NULL){
        /* and so on */



There is also a macro called offsetof which can be used to find the offset, in bytes,
of a structure member. The offset is the distance between the member and the start
of the structure. It would be used like this:

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
main(){
        size_t distance;
        struct x{
                int a, b, c;
        }s_tr;
        distance = offsetof(s_tr, c);
        printf("Offset of x.c is %lu bytes\n",
                (unsigned long)distance);
        exit(EXIT_SUCCESS);
}

Example 9.82

The expression s_tr.c must be capable of evaluation as an address constant (see
Chapter     6). If the member whose offset you want is a bitfield, then you're out of
luck; offsetof has undefined behaviour in that case.

Note carefully the way that a size_t has to be cast to the longest possible unsigned
type to ensure that not only is the argument to printf of the type that it expects
(%luis the format string for unsigned long), but also no precision is lost. This is all
because the type of size_t is not known to the programmer.

The last item declared in <stddef.h> is wchar_t, an integral type large enough to
hold a wide character from any supported extended character sets.

9.1.4. The <errno.h> Header
This header defines errno along with the macros EDOM and ERANGE, which expand to
nonzero integral constant expressions; their form is additionally guaranteed to be
acceptable to #if directives. The latter two are used by the mathematical functions
to report which kind of errors they encountered and are more fully described later.

errno is provided to tell you when library functions have detected an error. It is not
necessarily, as it used to be, an external variable, but is now a modifiable lvalue
that has type int. It is set to zero at program start-up, but from then on never reset
unless explicitly assigned to; in particular, the library routines never reset it. If an
error occurs in a library routine, errno is set to a particular value to indicate what
went wrong, and the routine returns a value (often -1) to indicate that it failed. The
usual use is like this:

#include <stdio.h>
#include <stddef.h>
#include <errno.h>
errno = 0;



if(some_library_function(arguments) < 0){
        /* error processing code... */
        /* may use value of errno directly */

The implementation of  errno is not known to the programmer, so don't try to do
anything other than reset  it  or  inspect its  value.  It  isn't  guaranteed to have an
address, for example.

What's more, you should only check  errno if the particular library function in use
documents its effect on errno.

Other library functions are free to set it to arbitrary values after a call unless their
description explicitly states what they do with it.

9.2. Diagnostics
While you are debugging programs, it is often useful to check that the value of an
expression  is  the  one  that  you  expected.  The  assert function  provides  such  a
diagnostic aid.

In  order  to  use  assert you  must  first  include  the  header  file  <assert.h>.  The
function is defined as

#include <assert.h>
void assert(int expression)

If  the expression evaluates to zero (i.e.  false) then  assert will  write a message
about the failing expression, including the name of the source file, the line at which
the assertion was made and the expression itself. After this, the abort function is
called, which will halt the program.

assert(1 == 2);
/* Might result in */
Assertion failed: 1 == 2, file silly.c, line 15

Assert is actually defined as a macro, not as a real function. In order to disable 
assertions when a program is found to work satisfactorily, defining the name NDEBUG
before including <assert.h> will disable assertions totally. You should beware of 
side effects that the expression may have: when assertions are turned off with 
NDEBUG, the expression is not evaluated. Thus the following example will behave 
unexpectedly when debugging is turned off with the #define NDEBUG.



#define NDEBUG
#include <assert.h>
void
func(void)
{
        int c;
        assert((c = getchar()) != EOF);
        putchar(c);
}

Example 9.83

Note that assert returns no value.

9.3. Character handling
There are a variety of functions provided for testing and mapping characters. The
testing functions, which are described first, allow you to test if a character is of a
particular  type,  such  as  alphabetic,  upper  or  lower  case,  numeric,  a  control
character,  a punctuation mark, printable or not and so on. The character testing
functions  return  an  integer,  either  zero  if  the  character  supplied  is  not  of  the
category specified, or non-zero if it was. The functions all take an integer argument,
which  should  either  be  an  int,  the  value  of  which  should  be  representable  as
unsigned char,  or the integer constant  EOF, as returned from functions such as
getchar(). The behaviour is undefined if it is not.

These functions depend on the program's locale setting.

A printing character is a member of an implementation defined character set. Each
printing character occupies one printing position. A control character is a member of
an implementation defined character set, each of which is not a printing character.
If the 7-bit ASCII character set is used, the printing characters are those that lie
between space (0x20) and tilde (0x7e), the control characters are those between
NUL (0x0) and US (0x1f), and the character DEL (0x7f).

The  following  is  a  summary  of  all  the  character  testing  functions.  The  header
<ctype.h> must be included before any of them is used.

isalnum(int c)

True if c is alphabetic or a digit; specifically (isalpha(c)||isdigit(c)).

isalpha(int c)

True if (isupper(c)||islower(c)).

Also true for an implementation-defined set of characters which do not return 
true results from any of iscntrl, isdigit, ispunct or isspace. In the C locale, this 
extra set of characters is empty.

iscntrl(int c)



True if c is a control character.

isdigit(int c)

True if c is a decimal digit.

isgraph(int c)

True if c is any printing character except space.

islower(int c)

True if c is a lower case alphabetic letter. Also true for an implementation 
defined set of characters which do not return true results from any of iscntrl, 
isdigit, ispunct or isspace. In the C locale, this extra set of characters is 
empty.

isprint(int c)

True if c is a printing character (including space).

ispunct(int c)

True if c is any printing character that is neither a space nor a character which 
would return true from isalnum.

isspace(int c)

True if c is either a white space character (one of ' ' '\f' '\n' '\r' '\t' '\v') 
or, in other than the C locale, characters which would not return true from isalnum

isupper(int c)

True if c is an upper case alphabetic character.
Also true for an implementation-defined set of characters which do not return 
true results from any of iscntrl, isdigit, ispunct or isspace. In the C 
locale, this extra set of characters is empty.

isxdigit(int c)

True if c is a valid hexadecimal digit.

Two additional  functions map characters from one set into another.  The function
tolower will, if given a upper case character as its argument, return the lower case
equivalent. For example,

tolower('A') == 'a'

If tolower is given any character other than an upper case letter, it will return that
character.

The converse function toupper maps lower case alphabetic letters onto their upper
case equivalent.



For each, the conversion is only performed if there is a corresponding character in
the alternate case. In some locales, not all upper case characters have lower case
equivalents, and vice versa.

9.4. Localization
This is where the program's idea of its current locale can be controlled. The header
file  <locale.h> declares the setlocale and localeconv functions and a number of
macros:

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

all of which expand to integral constant expressions and are used as values of the
category argument to  setlocale (other names may also be defined: they will all
start with LC_X where X is an upper case letter), and the type

struct lconv

which is used for storing information about the formatting of numeric values. For
members of type char, CHAR_MAX is used to indicate that the value is not available
in the current locale.

lconv contains at least the following members:

char *decimal_point

The character used for the decimal point in formatted non-monetary values. 
"." in the C locale.

char *thousands_sep

The character used for separating groups of digits to the left of the decimal 
point in formatted non-monetary values. "" in the C locale.

char *grouping

Defines the number of digits in each group when formatting non-monetary 
values. The elements are interpreted as follows: A value of CHAR_MAX indicates 
that no further grouping is to be performed; 0 indicates that the previous 
element should be repeated for the remaining digits; if any other character is 
used, its integer value represents the number of digits that comprise the 
current group (the next character in the sequence is interpreted before 
grouping). "" in the C locale. As an example, "\3" specifies that digits should 
be grouped in threes; the terminating null in the string signifies that the \3 
repeats.

char *int_curr_symbol



The first three characters are used to hold the alphabetic international 
currency symbol for the current locale, the fourth character is used to separate
the international currency symbol from the monetary quantity. "" in the C 
locale.

char *currency_symbol

The currency symbol for the current locale. "" in the C locale.

char *mon_decimal_point

The character used as the decimal point when formatting monetary values. "" 
in the C locale.

char *mon_thousands_sep

The digit group separator for formatted monetary values. "" in the C locale.

char *mon_grouping

Defines the number of digits in each group when formatting monetary values. 
Its elements are interpreted as those for grouping. "" in the C locale.

char *positive_sign

The string used to signify a non-negative monetary value. "" in the C locale.

char *negative_sign

The string used to signify a negative monetary value. "" in the C locale.

char int_frac_digits

The number of digits to be displayed after the decimal point in an 
internationally formatted monetary value. CHAR_MAX in the C locale.

char frac_digits

The number of digits to be displayed after the decimal point in a non-
internationally formatted monetary value. CHAR_MAX in the C locale.

char p_cs_precedes

A value of 1 indicates that the currency_symbol should precede the value 
when formatting a non-negative monetary quantity; a value of 0 indicates that 
it should follow. CHAR_MAX in the C locale.

char p_sep_by_space

A value of 1 indicates that the currency symbol is separated by a space from 
the value when formatting a non-negative monetary quantity; 0 indicates no 
space. CHAR_MAX in the C locale.

char n_cs_precedes



As p_cs_precedes for negative monetary values. CHAR_MAX in the C locale.

char n_sep_by_space

As p_sep_by_space for negative monetary values. CHAR_MAX in the C locale.

char p_sign_posn

Indicates the position of the positive_sign for a non-negative formatted 
monetary value according to the following:

 parentheses surround quantity and currency_symbol
 the string precedes the quantity and currency_symbol
 the string follows the quantity and currency_symbol
 the string precedes the currency_symbol

the string follows the currency_symbol
CHAR_MAX in the C locale.

char n_sign_posn

As p_sign_posn for negative monetary values. CHAR_MAX in the C locale.

9.4.1. The setlocale function
#include <locale.h>
char *setlocale(int category, const char *locale);

This function allows the program's idea of its locale to be set. All or parts of the
locale can be set by providing values for category as follows:

LC_ALL

Set entire locale.

LC_COLLATE

Modify behaviour of strcoll and strxfrm.

LC_CTYPE

Modify behaviour of character-handling functions.

LC_MONETARY

Modify monetary formatting information returned by localeconv.

LC_NUMERIC

Modify decimal-point character for formatted I/O and string conversion 
routines.

LC_TIME

Modify behaviour of strftime.



The values for locale can be:

"C" Select  the  minimal  environment  for  C
translation

"" Select  the  implementation-defined  'native
environment'

implementation
defined

Select other environments

When the program starts, it has an environment as if

setlocale(LC_ALL, "C");

has been executed.

The current string associated with a given category can be queried by passing a null
pointer  as  the  value  for  locale;  if  the  selection  can  be  performed,  the  string
associated with the specified category for the new locale is returned. This string is
such that if it is used in a subsequent call to setlocale, along with its associated
category, that part of the program's locale will be restored. If the selection cannot
be performed, a null pointer is returned and the locale is not changed.

9.4.2. The localeconv function
#include <locale.h>

struct lconv *localeconv(void);

The function returns a pointer to a structure of type struct lconv, set according to
the current locale, which may be overwritten by subsequent calls to localeconv or
setlocale. The structure must not be modified in any other way.

For example, if in the current locale monetary values should be represented as

IR£1,234.56 positive format

(IR£1,234.56) negative format

IRP 1,234.56 international
format

then the monetary members of lconv would have the values:



9.5. Limits
Two header files  <float.h> and  <limits.h>
define several implementation specific limits.

9.5.1. Limits.h
Table   9  .19 gives  the  names  declared,  the
allowable  values,  and  a  comment  on  what
they  mean.  For  example,  the  description  of
SHRT_MIN shows  that  in  a  given
implementation the value must be less than
or  equal  to  -32767:  this  means  that  for
maximum portability  a  program  cannot  rely
on short  variables being able to hold values
more negative than -32767. Implementations
may choose to support values which are more
negative but must provide support for at least
-32767.

Name Allowable value Comment

CHAR_BIT (=8) bits in a char

CHAR_MAX see note max value of a char

CHAR_MIN see note min value of a char

INT_MAX (=+32767) max value of an 

INT_MIN (=-32767) min value of an int

LONG_MAX (=+2147483647) max value of a long

LONG_MIN (=-2147483647) min value of a long

MB_LEN_MAX (=1)
max  number  of  bytes  in  a  multibyte
character

SCHAR_MAX (=+127) max value of a signed char

SCHAR_MIN (=-127) min value of a signed char

SHRT_MAX (=+32767) max value of a short

SHRT_MIN (=-32767) min value of a short

UCHAR MAX (=255U) max value of an 

int_curr_symbol "IRP "

currency_symbol "IR£"

mon_decimal_point "."

mon_thousands_sep ","

mon_grouping "\3"

postive_sign ""

negative_sign ""

int_frac_digits 2

frac_digits 2

p_cs_precedes 1

p_sep_by_space 0

n_cs_precedes 1

n_sep_by_space 0

p_sign_posn CHAR_MAX

n_sign_posn 0



Name Allowable value Comment

UINT_MAX (=65535U) max value of an unsigned int

ULONG_MAX (=4294967295U) max value of an unsigned long

USHRT_MAX (=65535U) max value of an unsigned short

Note: if the implementation treats  chars as signed, then the values of  CHAR_MAX
and CHAR_MIN are the same as the equivalent SCHAR versions. If not, then the value
of CHAR_MIN is zero and the value of CHAR_MAX is equal to the value of UCHAR_MAX.

Table 9.19 - <limits.h>

9.5.2. Float.h
For floating point numbers, the file  <float.h> contains a similar set of minimum
values. (It is assumed that where no minimum value is specified, there is either no
minimum, or the value depends on another value.)

Name
Allowable

value
Comment

FLT_RADIX (=2) the radix of exponent representation

DBL_DIG (=10) the number of digits of precision in a double

DBL_EPSILON (=1E-9) minimum positive number such that 1.0 + x ? 1.0

DBL_MANT_DIG (-)
the number of base FLT_RADIX digits in the mantissa
part of a double

DBL_MAX (=1E+37) max value of a double

DBL_MAX_10_EXP (=+37) max value of exponent (base 10) of a double

DBL_MAX_EXP (-)
max  value  of  exponent  (base  FLT_RADIX))  of  a
double

DBL_MIN (=1E-37) min value of a double

DBL_MIN_10_EXP (=37) minimum value of exponent (base 10) of a double

DBL_MIN_EXP (-)
min  value  of  exponent  part  of  a  double (base
FLT_RADIX)

FLT_DIG (=6) the number of digits of precision in a float

FLT_EPSILON (=1E-5) minimum positive number such that 1.0 + x ? 1.0

FLT_MANT_DIG (-)
the number of base FLT_RADIX digits in the mantissa
of a float



Name
Allowable

value
Comment

FLT_MAX (=1E+37) max value of a float

FLT_MAX_10_EXP (=+37) max value (base 10) of exponent part of a float

FLT_MAX_EXP (-)
max value (base  FLT_RADIX) of exponent part of a
float

FLT_MIN (=1E-37) min value of a float

FLT_MIN_10_EXP (=-37) min value (base 10) of exponent part of a float

FLT_MIN_EXP (-)
min value (base  FLT_RADIX)  of  exponent  part  of  a
float

FLT_ROUNDS (0)

affects rounding of floating point addition:

-1

indeterminate

0

towards zero

1

to nearest

2

towards +infinity

3

towards -infinity

any other value is implementation defined.

LDBL_DIG (=10) the number of digits of precision in a long double

LDBL_EPSILON (=1E-9) minimum positive number such that 1.0 + x ?= 1.0

LDBL_MANT_DIG (-)
the number of base FLT_RADIX digits in the mantissa
part of a long double

LDBL_MAX (=1E+37) max value of a long double

LDBL_MAX_10_EXP (=+37) max value of exponent (base 10) of a long double



Name
Allowable

value
Comment

LDBL_MAX_EXP (-)
max value of exponent (base  FLT_RADIX) of a  long
double

LDBL_MIN (=1E-37) minimum value of a long double

LDBL_MIN_10_EXP (=-37)
min  value  of  exponent  part  (base  10)  of  a  long
double

LDBL_MIN_EXP (-)
min value of exponent part of a  long double (base
FLT_RADIX)

Table 9.20 - <float.h>

9.6. Mathematical functions
If you are writing mathematical programs, involving floating point calculations and
so on, then you will undoubtedly require access to the mathematics library. This set
of functions all take  double arguments, and return a double result. The functions
and associated macros are defined in the include file <math.h>.

The macro  HUGE_VAL is  defined, which expands to a positive double expression,
which is not necessarily representable as a float.

For all  the functions,  a  domain error occurs  if  an input argument is  outside the
domain over which the function is defined. An example might be attempting to take
the square root of a negative number. If this occurs,  errno is set to the constant
EDOM, and the function returns an implementation defined value.

If the result of the function cannot be represented as a double value then a range
error occurs.  If  the  magnitude  of  the  result  is  too  large,  the  functions  return
±HUGE_VAL (the sign will be correct) and errno is set to ERANGE. If the result is too
small, 0.0 is returned and the value of errno is implementation defined.

The following list briefly describes each of the functions available:

double acos(double x);

Principal value of the arc cosine of x in the range 0-p radians.
Errors: EDOM if x is not in the range -1-1.

double asin(double x);

Principal value of the arc sine of x in the range -p/2-+p/2 radians.
Errors: EDOM if x is not in the range -1-1.

double atan(double x);

Principal value of the arc tangent of x in the range -p/2-+p/2 radians.

double atan2(double y, double x);



Principal value of the arc tangent of y/x in the range -p-+p radians, using the 
signs of both arguments to determine the quadrant of the return value.
Errors: EDOM may occur if both x and y are zero.

double cos(double x);

Cosine of x (x measured in radians).

double sin(double x);

Sine of x (x measured in radians).

double tan(double x);

Tangent of x (x measured in radians). When a range error occurs, the sign of 
the resulting HUGE_VAL is not guaranteed to be correct.

double cosh(double x);

Hyperbolic cosine of x.
Errors: ERANGE occurs if the magnitude of x is too large.

double sinh(double x);

Hyperbolic sine of x.
Errors: ERANGE occurs if the magnitude of x is too large.

double tanh(double x);

Hyperbolic tangent of x.

double exp(double x);

Exponential function of x. Errors: ERANGE occurs if the magnitude of x is too 
large.

double frexp(double value, int *exp);

Break a floating point number into a normalized fraction and an integral power 
of two. This integer is stored in the object pointed to by exp.

double ldexp(double x, int exp);

Multiply x by 2 to the power exp
Errors: ERANGE may occur.

double log(double x);

Natural logarithm of x.
Errors: EDOM occurs if x is negative. ERANGE may occur if x is zero.

double log10(double x);



Base-ten logarithm of x.
Errors: EDOM occurs if x is negative. ERANGE may occur if x is zero.

double modf(double value, double *iptr);

Break the argument value into integral and fractional parts, each of which has 
the same sign as the argument. It stores the integrbal part as a double in the 
object pointed to by iptr, and returns the fractional part.

double pow(double x, double y);

Compute x to the power y.
Errors: EDOM occurs if x < 0 and y not integral, or if the result cannot be 
represented if x is 0, and y = 0. ERANGE may also occur.

double sqrt(double x);

Compute the square root of x.
Errors: EDOM occurs if x is negative.

double ceil(double x);

Smallest integer not less than x.

double fabs(double x);

Absolute value of x.

double floor(double x);

Largest integer not greater than x.

double fmod(double x, double y);

Floating point remainder of x/y.
Errors: If y is zero, it is implementation defined whether fmod returns zero or a 
domain error occurs.

9.7. Non-local jumps
Provision is made for you to perform what is, in effect, a goto from one function to
another. It isn't possible to do this by means of a goto and a label, since labels have
only function scope. However, the macro setjmp and function longjmp provide an
alternative, known as a non-local goto, or a non-local jump.

The file  <setjmp.h> declares something called a  jmp_buf,  which is used by the
cooperating macro and function to store  the information necessary to make the
jump. The declarations are as follows:

#include <setjmp.h>
int setjmp(jmp_buf env);
void longjmp(jmp_buf env, int val);



The setjmp macro is used to initialise the jmp_buf and returns zero on its initial call.
The bizarre thing is that it returns  again, later, with a non-zero value, when the
corresponding  longjmp call  is  made!  The non-zero  value is  whatever  value was
supplied to the call of longjmp. This is best explained by way of an example:

#include <stdio.h>
#include <stdlib.h>
#include <setjmp.h>
void func(void);
jmp_buf place;
main(){
        int retval;
        /*
         * First call returns 0,
         * a later longjmp will return non-zero.
         */
        if(setjmp(place) != 0){
                printf("Returned using longjmp\n");
                exit(EXIT_SUCCESS);
        }
        /*
         * This call will never return - it
         * 'jumps' back above.
         */
        func();
        printf("What! func returned!\n");
}
void
func(void){
      /*
       * Return to main.
       * Looks like a second return from setjmp,
       * returning 4!
       */
      longjmp(place, 4);
      printf("What! longjmp returned!\n");
}

Example 9.84

The  val argument to  longjmp is  the value seen in  the second and subsequent
'returns' from setjmp. It should normally be something other than 0; if you attempt
to return 0 via  longjmp,  it  will  be changed to  1.  It  is  therefore  possible  to  tell
whether  the  setjmp was  called  directly,  or  whether  it  was  reached  by  calling
longjmp.

If there has been no call to setjmp before calling longjmp, the effect of longjmp is
undefined, almost certainly causing the program to crash. The longjmp function is
never  expected  to  return,  in  the  normal  sense,  to  the  instructions  immediately
following the call. All accessible objects on 'return' from setjmp have the values that



they had when  longjmp was called, except for objects of automatic storage class
that do not have volatile type; if they have been changed between the setjmp and
longjmp calls, their values are indeterminate.

The  longjmp function executes correctly in the contexts of interrupts, signals and
any of their associated functions. If longjmp is invoked from a function called as a
result of a signal arriving while handling another signal, the behaviour is undefined.

It's a serious error to  longjmp to a function which is no longer active (i.e. it has
already returned or another  longjump call  has transferred to a  setjmp occurring
earlier in a set of nested calls).

The  Standard  insists  that,  apart  from  appearing  as  the  only  expression  in  an
expression statement, setjmp may only be used as the entire controlling expression
in an if, switch, do, while, or for statement. A slight extension to that rule is that
as long as it is the whole controlling expression (as above) the setjmp call may be
the subject of the ! operator, or may be directly compared with an integral constant
expression  using  one  of  the  relational  or  equality  operators.  No  more  complex
expressions may be employed. Examples are:

setjmp(place);                    /* expression statement */
if(setjmp(place)) ...             /* whole controlling expression */
if(!setjmp(place)) ...            /* whole controlling expression */
if(setjmp(place) < 4) ...         /* whole controlling expression */
if(setjmp(place)<;4 && 1!=2) ...  /* forbidden */

9.8. Signal handling
Two functions allow for asynchronous event handling to be provided. A  signal is a
condition that  may be  reported  during program execution,  and can  be ignored,
handled specially, or, as is the default, used to terminate the program. One function
sends signals, another is used to determine how a signal will be processed. Many of
the signals may be generated by the underlying hardware or operating system as
well as by means of the signal-sending function raise.

The signals are defined in the include file <signal.h>.

SIGABRT

Abnormal termination, such as instigated by the abort function. (Abort.)

SIGFPE

Erroneous arithmetic operation, such as divide by 0 or overflow. (Floating point
exception.)

SIGILL

An 'invalid object program' has been detected. This usually means that there is
an illegal instruction in the program. (Illegal instruction.)



SIGINT

Interactive attention signal; on interactive systems this is usually generated by
typing some 'break-in' key at the terminal. (Interrupt.)

SIGSEGV

Invalid storage access; most frequently caused by attempting to store some 
value in an object pointed to by a bad pointer. (Segment violation.)

SIGTERM

Termination request made to the program. (Terminate.)

Some implementations may have additional signals available, over and above this
standard set. They will be given names that start SIG, and will have unique values,
apart from the set above.

The function  signal allows you to specify the action taken on receipt of a signal.
Associated  with  each  signal  condition  above,  there  is  a  pointer  to  a  function
provided to handle this signal. The signal function changes this pointer, and returns
the original value. Thus the function is defined as

#include <signal.h>
void (*signal (int sig, void (*func)(int)))(int);

That is to say, signal is a function that returns a pointer to another function. This
second function takes a single int argument and returns void. The second argument
to  signal is similarly a pointer to a function returning  void which takes an  int
argument.

Two  special  values  may  be  used  as  the  func argument  (the  signal-handling
function), SIG_DFL, the initial, default, signal handler; and SIG_IGN, which is used to
ignore a signal. The implementation sets the state of all signals to one or other of
these values at the start of the program.

If the call to signal succeeds, the previous value of func for the specified signal is
returned. Otherwise, SIG_ERR is returned and errno is set.

When a signal event happens which is not being ignored, if the associated func is a
pointer to a function, first the equivalent of  signal(sig, SIG_DFL) is executed.
This  resets  the  signal  handler  to  the  default  action,  which  is  to  terminate  the
program. If  the signal was  SIGILL then this resetting is implementation defined.
Implementations may choose to 'block' further instances of the signal instead of
doing the resetting.

Next, a call is made to the signal-handling function. If that function returns normally,
then under most circumstances the program will  resume at the point where the
event  occurred.  However,  if  the  value  of  sig was  SIGFPE (a  floating  point



exception),  or  any  implementation  defined  computational  exception,  then  the
behaviour is undefined. The most usual thing to do in the handler for SIGFPE is to
call one of the functions abort, exit, or longjmp.

The following program fragment shows the use of signal to perform a tidy exit to a
program on receipt of the interrupt or 'interactive attention' signal.

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
FILE *temp_file;
void leave(int sig);
main() {
        (void) signal(SIGINT,leave);
        temp_file = fopen("tmp","w");
        for(;;) {
                /*
                 * Do things....
                 */
                printf("Ready...\n");
                (void)getchar();
        }
        /* can't get here ... */
        exit(EXIT_SUCCESS);
}
/*
 * on receipt of SIGINT, close tmp file
 * but beware - calling library functions from a
 * signal handler is not guaranteed to work in all
 * implementations.....
 * this is not a strictly conforming program
 */
void
leave(int sig) {
        fprintf(temp_file,"\nInterrupted..\n");
        fclose(temp_file);
        exit(sig);
}
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It is possible for a program to send signals to itself by means of the raise function.
This is defined as follows

include <signal.h>
int raise (int sig);

The signal sig is sent to the program.

Raise returns zero if successful, non-zero otherwise. The  abort library function is
essentially implementable as follows:



#include <signal.h>
void
abort(void) {
  raise(SIGABRT);
}

If a signal occurs for any reason other than calling abort or raise, the signal-handling
function may only call signal or assign a value to a volatile static object of type
sig_atomic_t. The type sig_atomic_t is declared in <signal.h>. It is the only type
of object that can safely be modified as an atomic entity, even in the presence of
asynchronous interrupts. This is a very onerous restriction imposed by the Standard,
which, for example, invalidates the leave function in the example program above;
although the function would work correctly in some environments, it does not follow
the strict rules of the Standard.

9.9. Variable numbers of arguments
It is often desirable to implement a function where the number of arguments is not
known, or is not constant, when the function is written. Such a function is printf,
described in  Section     9.11. The following example shows the declaration of such a
function.

int f(int, ... );
int f(int, ... ) {
        .
        .
        .
}
int g() {
        f(1,2,3);
}

Example 9.86

In order to access the arguments within the called function, the functions declared
in the <stdarg.h> header file must be included. This introduces a new type, called a
va_list, and three functions that operate on objects of this type, called va_start,
va_arg, and va_end.

Before any attempt can be made to access a variable argument list, va_start must
be called. It is defined as

#include <stdarg.h>
void va_start(va_list ap, parmN);

The va_start macro initializes ap for subsequent use by the functions va_arg and
va_end.  The second argument  to  va_start,  parmN is  the  identifier  naming the
rightmost parameter in the variable parameter list in the function definition (the one
just before the , ...  ).  The identifier  parmN must not be declared with  register
storage class or as a function or array type.



Once initialized, the arguments supplied can be accessed sequentially by means of
the va_arg macro. This is peculiar because the type returned is determined by an
argument to the macro. Note that this is impossible to implement as a true function,
only as a macro. It is defined as

#include <stdarg.h>
type va_arg(va_list ap, type);

Each call to this macro will extract the next argument from the argument list as a
value of the specified type. The  va_list argument must be the one initialized by
va_start.  If  the  next  argument  is  not  of  the  specified  type,  the  behaviour  is
undefined. Take care here to avoid problems which could be caused by arithmetic
conversions. Use of char or short as the second argument to va_arg is invariably an
error: these types always promote up to one of signed int or unsigned int, and
float converts to  double. Note that it is implementation defined whether objects
declared to have the types  char,  unsigned char,  unsigned short and unsigned
bitfields will promote to unsigned int, rather complicating the use of va_arg. This
may be an area where some unexpected subtleties arise; only time will tell.

The behaviour  is  also undefined if  va_arg is  called when there were no further
arguments.

The type argument must be a type name which can be converted into a pointer to
such an object simply by appending a * to it (this is so the macro can work). Simple
types such as char are fine (because char * is a pointer to a character) but array of
char won't work (char [] does not turn into 'pointer to array of char' by appending
a  *).  Fortunately,  arrays can easily be processed by remembering that an array
name used as an actual argument to a function call is converted into a pointer. The
correct type for an argument of type 'array of char' would be char *.

When all the arguments have been processed, the va_end function should be called.
This will prevent the va_list supplied from being used any further. If va_end is not
used, the behaviour is undefined.

The entire argument list can be re-traversed by calling va_start again, after calling
va_end. The va_end function is declared as

#include <stdarg.h>
void va_end(va list ap);

The  following  example  shows  the  use  of  va_start,  va_arg,  and  va_end to
implement a function that returns the biggest of its integer arguments.



#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
int maxof(int, ...) ;
void f(void);
main(){
        f();
        exit(EXIT SUCCESS);
}
int maxof(int n args, ...){
        register int i;
        int max, a;
        va_list ap;
        va_start(ap, n args);
        max = va_arg(ap, int);
        for(i = 2; i <= n_args; i++) {
                if((a = va_arg(ap, int)) > max)
                        max = a;
        }
        va_end(ap);
        return max;
}
void f(void) {
        int i = 5;
        int j[256];
        j[42] = 24;
        printf("%d\n",maxof(3, i, j[42], 0));
}

Example 9.87

9.10. Input and output

9.10.1. Introduction
One  of  the  reasons  that  has  prevented  many  programming  languages  from
becoming widely used for 'real programming' is their poor support for I/O, a subject
which has never seemed to excite language designers. C has avoided this problem,
oddly enough, by having no I/O at all! The C language approach has always been to
do I/O using library functions,  which ensures that  system designers can provide
tailored I/O instead of being forced to change the language itself.

As C has evolved, a library package known as the 'Standard I/O Library' or stdio, has
evolved with it and has proved to be both flexible and portable. This package has
now become part of the Standard.

The old stdio package relied heavily on the UNIX model of file access, in particular
the assumption that there is no distinction between unstructured binary files and
files containing readable text.  Many operating systems do maintain a distinction
between the two, and to ensure that C programs can be written portably to run on
both types of file model, the stdio package has been modified. There are changes in



this  area which  affect  many existing programs,  although strenuous  efforts  were
taken to limit the amount of damage.

Old C programs should still be able work unmodified in a UNIX environment.

9.10.2. The I/O model
The  I/O  model  does  not  distinguish  between  the  types  of  physical  devices
supporting the I/O. Each source or sink of data (file) is treated in the same way, and
is viewed as a stream of bytes. Since the smallest object that can be represented in
C is the character,  access to a file is permitted at any character boundary.  Any
number of characters can be read or written from a movable point, known as the file
position indicator.  The characters will  be read,  or written, in sequence from this
point, and the position indicator moved accordingly. The position indicator is initially
set to the beginning of a file when it is opened, but can also be moved by means of
positioning  requests.  (Where  random  access  is  not  possible,  the  file  position
indicator is ignored.) Opening a file in append mode has an implementation defined
effect on the stream's file position indicator.

The overall effect is to provide sequential reads or writes unless the stream was
opened in append mode, or the file position indicator is explicitly moved.

There are two types of file, text files and binary files, which, within a program, are
manipulated as  text streams and binary streams once they have been opened for
I/O. The stdio package does not permit operations on the contents of files 'directly',
but only by viewing them as streams.

9.10.2.1. Text streams
The Standard specifies what is meant by the term  text stream, which essentially
considers  a  file  to  contain  lines  of  text.  A  line  is  a  sequence  of  zero  or  more
characters terminated by a newline character. It is quite possible that the actual
representation of lines in the external environment is different from this and there
may be transformations of the data stream on the way in and out of the program; a
common requirement is to translate the '\n' line-terminator into the sequence '\r\n'
on output, and do the reverse on input. Other translations may also be necessary.

Data read in from a text stream is guaranteed to compare equal to the data that
was earlier  written out to the file if  the data consists  only of  complete lines of
printable  characters  and  the  control  characters  horizontal-tab  and  newline,  no
newline  character  is  immediately  preceded  by  space  characters  and  the  last
character is a newline.

It is guaranteed that, if the last character written to a text file is a newline, it will
read back as the same.

It  is  implementation  defined  whether  the  last  line  written  to  a  text  file  must
terminate with a newline character; this is because on some implementations text
files and binary files are the same.



Some implementations may strip the leading space from lines consisting only of a
space followed by a newline, or strip trailing spaces at the end of a line!

An  implementation  must  support  text  files  with  lines  containing  at  least
254 characters, including the terminating newline.

Opening a  text  stream in  update mode may result  in  a  binary  stream in  some
implementations.

Writing on a text stream may cause some implementations to truncate the file at
that point-any data beyond the last byte of the current write being discarded.

9.10.2.2. Binary streams
A binary stream is a sequence of characters that can be used to record a program's
internal data, such as the contents of structures or arrays in binary form. Data read
in from a binary stream will always compare equal to data written out earlier to the
same  stream,  under  the  same  implementation.  In  some  circumstances,  an
implementation-defined number of  NUL characters may be appended to a binary
stream.

The contents of binary files are exceedingly machine specific, and not, in general,
portable.

9.10.2.3. Other streams
Other stream types may exist, but are implementation defined.

9.10.3. The stdio.h header file
To provide support  for streams of  the various kinds,  a number of  functions and
macros  exist.  The  <stdio.h> header  file  contains  the  various  declarations
necessary  for  the  functions,  together  with  the  following  macro  and  type
declarations:

FILE

The type of an object used to contain stream control information. Users of stdio
never need to know the contents of these objects, but simply manipulate 
pointers to them. It is not safe to copy these objects within the program; 
sometimes their addresses may be 'magic'.

fpos_t

A type of object that can be used to record unique values of a stream's file 
position indicator.

_IOFBF _IOLBF _IONBF

Values used to control the buffering of a stream in conjunction with the 
setvbuf function.

BUFSIZ



The size of the buffer used by the setbuf function. An integral constant 
expression whose value is at least 256.

EOF

A negative integral constant expression, indicating the end-of-file condition on 
a stream i.e. that there is no more input.

FILENAME_MAX

The maximum length which a filename can have, if there is a limit, or 
otherwise the recommended size of an array intended to hold a file name.

FOPEN_MAX

The minimum number of files that the implementation guarantees may be held
open concurrently; at least eight are guaranteed. Note that three predefined 
streams exist and may need to be closed if a program needs to open more 
than five files explicitly.

L_tmpnam

The maximum length of the string generated by tmpnam; an integral constant 
expression.

SEEK_CUR SEEK_END SEEK_SET

Integral constant expressions used to control the actions of fseek.

TMP_MAX

The minimum number of unique filenames generated by tmpnam; an integral 
constant expression with a value of at least 25.

stdin stdout stderr

Predefined objects of type (FILE *) referring to the standard input, output and 
error streams respectively. These streams are automatically open when a 
program starts execution.

9.10.4. Opening, closing and buffering of streams

9.10.4.1. Opening
A  stream  is  connected  to  a  file  by  means  of  the  fopen,  freopen or  tmpfile
functions. These functions will, if successful, return a pointer to a FILE object.

Three  streams  are  available  without  any  special  action;  they  are  normally  all
connected to the physical device associated with the executing program: usually
your terminal. They are referred to by the names stdin, the standard input, stdout,
the  standard  output,  and  stderr,  the  standard  error streams.  Normal  keyboard
input is from stdin, normal terminal output is to  stdout, and error messages are



directed to stderr. The separation of error messages from normal output messages
allows the stdout stream to be connected to something other than the terminal
device, and still to have error messages appear on the screen in front of you, rather
than to be redirected to this file. These files are only fully buffered if they do not
refer to interactive devices.

As  mentioned  earlier,  the  file  position  indicator  may  or  may  not  be  movable,
depending on the underlying device. It is not possible, for example, to move the file
position indicator on stdin if that is connected to a terminal, as it usually is.

All non-temporary files must have a filename, which is a string. The rules for what
constitutes  valid  filenames  are  implementation  defined.  Whether  a  file  can  be
simultaneously open multiple times is also implementation defined. Opening a new
file  may  involve  creating  the  file.  Creating  an  existing  file  causes  its  previous
contents to be discarded.

9.10.4.2. Closing
Files are closed by explicitly calling  fclose,  exit or by returning from  main. Any
buffered data is flushed. If a program stops for some other reason, the status of files
which it had open is undefined.

9.10.4.3. Buffering
There are three types of buffering:

Unbuffered

Minimum internal storage is used by stdio in an attempt to send or receive 
data as soon as possible.

Line buffered

Characters are processed on a line-by-line basis. This is commonly used in 
interactive environments, and internal buffers are flushed only when full or 
when a newline is processed.

Fully buffered

Internal buffers are only flushed when full.

The buffering associated  with  a stream can  always be flushed by using  fflush
explicitly. Support for the various types of buffering is implementation defined, and
can be controlled within these limits using setbuf and setvbuf.

9.10.5. Direct file manipulation
A number of functions exist to operate on files directly.

#include <stdio.h>
int remove(const char *filename);
int rename(const char *old, const char *new);



char *tmpnam(char *s);
FILE *tmpfile(void);

remove

Causes a file to be removed. Subsequent attempts to open the file will fail, 
unless it is first created again. If the file is already open, the operation of 
remove is implementation defined. The return value is zero for success, any 
other value for failure.

rename

Changes the name of the file identified by old to new. Subsequent attempts to 
open the original name will fail, unless another file is created with the old 
name. As with remove, rename returns zero for a successful operation, any 
other value indicating a failure.
If a file with the new name exists prior to calling rename, the behaviour is 
implementation defined.
If rename fails for any reason, the original file is unaffected.

tmpnam

Generates a string that may be used as a filename and is guaranteed to be 
different from any existing filename. It may be called repeatedly, each time 
generating a new name. The constant TMP_MAX is used to specify how many 
times tmpnam may be called before it can no longer find a unique name. 
TMP_MAX will be at least 25. If tmpnam is called more than this number of times, 
its behaviour is undefined by the Standard, but many implementations offer no
practical limit.
If the argument s is set to NULL, then tmpnam uses an internal buffer to build 
the name, and returns a pointer to that. Subsequent calls may alter the same 
internal buffer. The argument may instead point to an array of at least 
L_tmpnam characters, in which case the name will be filled into the supplied 
buffer. Such a filename may then be created, and used as a temporary file. 
Since the name is generated by the function, it is unlikely to be very useful in 
any other context. Temporary files of this nature are not removed, except by 
direct calls to the remove function. They are most often used to pass 
temporary data between two separate programs.

tmpfile

Creates a temporary binary file, opened for update, and returns a pointer to 
the stream of that file. The file will be removed when the stream is closed. If no
file could be opened, tmpfile returns a null pointer.

9.10.6. Opening named files
Named files are opened by a call to the fopen function, whose declaration is this:

#include <stdio.h>
FILE *fopen(const char *pathname, const char *mode);



The pathname argument is the name of the file to open, such as that returned from
tmpnam, or some program-specific filename.

Files can be opened in a variety of  modes, such as  read mode for reading data,
write mode for writing data, and so on.

Note that if you only want to write data to a file, fopen will create the file if it does
not already exist, or truncate it to zero length (losing its previous contents) if it did
exist.

The Standard list of modes is shown in Table  9 .21, although implementations may
permit extra modes by appending extra characters at the end of the modes.

Mode
Type of

file
Rea

d
Writ

e
Creat

e
Truncat

e

"r" text yes no no no

"rb" binary yes no no no

"r+" text yes yes no no

"r+b" binary yes yes no no

"rb+" binary yes yes no no

"w" text no yes yes yes

"wb" binary no yes yes yes

"w+" text yes yes yes yes

"w+b" binary yes yes yes yes

"wb+" binary yes yes yes yes

"a" text no yes yes no

"ab" binary no yes yes no

"a+" text yes yes yes no

"a+b" binary no yes yes no

"ab+" binary no yes yes no

Table 9.21 - File opening modes

Beware that some implementations of binary files may pad the last record with NULL
characters,  so  opening  them with  modes  ab,  ab+ or  a+b could  position the file
pointer beyond the last data written.

If  a file is  opened in append mode,  all writes will  occur  at  the end of  the file,
regardless of attempts to move the file position indicator  with  fseek.  The initial
position fo the file position indicator will be implementation defined.



Attempts to open a file in read mode, indicated by an 'r' as the first character in the
mode string, will fail if the file does not already exist or can't be read.

Files opened for update ('+' as the second or third character of mode) may be both
read and written, but a read may not immediately follow a write, or a write follow a
read, without an intervening call  to one (or more) of  fflush,  fseek,  fsetpos or
rewind. The only exception is that a write may immediately follow a read if EOF was
read.

It may also be possible in some implementations to omit the b in the binary modes,
using the same modes for text and binary files.

Streams opened by fopen are fully buffered only if they are not connected to an
interactive device; this ensures that prompts and responses are handled properly.

If fopen fails to open a file, it returns a null pointer; otherwise, it returns a pointer to
the object controlling the stream. The  stdin,  stdout and  stderr objects are not
necessarily modifiable and it may not be possible to use the value returned from
fopen for assignment to one of them. For this reason, freopen is provided.

9.10.7. Freopen
The  freopen function is used to take an existing stream pointer and associate it
with another named file:

#include <stdio.h>
FILE *freopen(const char *pathname,
              const char *mode, FILE *stream);

The  mode argument is the same as for  fopen. The  stream is closed first, and any
errors from the close are ignored. On error,  NULL is returned, otherwise the new
value for stream is returned.

9.10.8. Closing files
An open file is closed using fclose.

#include <stdio.h>
int fclose(FILE *stream);

Any unwritten data buffered for stream is flushed out and any unread data is thrown
away. If a buffer had been automatically allocated for the stream, it is freed. The file
is then closed.

Zero is returned on success, EOF if any error occurs.

9.10.9. Setbuf, setvbuf
These two functions are used to change the buffering strategy for an open stream:

#include <stdio.h>
int setvbuf(FILE *stream, char *buf,
              int type, size_t size);
void setbuf(FILE *stream, char *buf);



They must  be used  before the file is  either read from or written to.  The  type
argument defines how the stream will be buffered (see Table  9 .22).

Value Effect

_IONBF Do not buffer I/O

_IOFBF Fully buffer I/O

_IOLBF
Line buffer: flush buffer when full, when newline is written or when a
read is requested.

Table 9.22 - Type of buffering

The  buf argument can be a null pointer, in which case an array is automatically
allocated to hold the buffered data. Otherwise, the user can provide a buffer, but
should ensure that its lifetime is at least as long as that of the stream: a common
mistake is  to  use automatic  storage  allocated  inside a compound statement;  in
correct usage it is usual to obtain the storage from malloc instead. The size of the
buffer is specified by the size argument.

A call of  setbuf is exactly the same as a call of  setvbuf with  IOFBF for the type
argument, and  BUFSIZ for the  size argument. If  buf is a null  pointer, the value
_IONBF is used for type instead.

No value is returned by setbuf, setvbuf returns zero on success, non-zero if invalid
values are provided for type or size, or the request cannot be complied with.

9.10.10. Fflush
#include <stdio.h>
int fflush(FILE *stream);

If stream refers to a file opened for output or update, any unwritten data is 'written'
out. Exactly what that means is a function of the host environment, and C cannot
guarantee, for example, that data immediately reaches the surface of a disk which
might be supporting the file. If the stream is associated with a file opened for input
or update, any preceding ungetc operation is forgotten.

The most recent operation on the stream must have been an output operation; if
not, the behaviour is undefined.

A call of  fflush with an argument of zero flushes every output or update stream.
Care is taken to avoid those streams that  have not had an output as their  last
operation, thus avoiding the undefined behaviour mentioned above.

EOF is returned if an error occurs, otherwise zero.

9.11. Formatted I/O



There  are  a  number  of  related  functions  used  for  formatted  I/O,  each  one
determining the format of the I/O from a format string. For output, the format string
consists  of  plain  text,  which  is  output  unchanged,  and  embedded  format
specifications which  call  for  some  special  processing  of  one  of  the  remaining
arguments to the function. On input, the plain text must match what is seen in the
input stream; the format specifications again specify what the meaning of remaining
arguments is.

Each format specification is introduced by a % character, followed by the rest of the
specification.

9.11.1. Output: the printf family
For those functions performing output, the format specification takes the following
form, with optional parts enclosed in brackets:

%<flags><field width><precision><length>conversion

The meaning of flags, field width, precision, length, and conversion are given below,
although tersely. For more detail, it is worth looking at what the Standard says.

flags

Zero or more of the following:

-

Left justify the conversion within its field.

+

A signed conversion will always start with a plus or minus sign.

space

If the first character of a signed conversion is not a sign, insert a space. 
Overridden by + if present.

#

Forces an alternative form of output. The first digit of an octal conversion 
will always be a 0; inserts 0X in front of a non-zero hexadecimal 
conversion; forces a decimal point in all floating point conversions even if 
one is not necessary; does not remove trailing zeros from g and G 
conversions.

0

Pad d, i, o, u, x, X, e, E, f, F and G conversions on the left with zeros up to 
the field width. Overidden by the - flag. If a precision is specified for the 
d, i, o, u, x or X conversions, the flag is ignored. The behaviour is 
undefined for other conversions.



field width

A decimal integer specifying the minimum output field width. This will be 
exceeded if necessary. If an asterisk is used here, the next argument is 
converted to an integer and used for the value of the field width; if the value is
negative it is treated as a - flag followed by a positive field width. Output that 
would be less than the field width is padded with spaces (zeros if the field 
width integer starts with a zero) to fit. The padding is on the left unless the left-
adjustment flag is specified.

precision

This starts with a period '.'. It specifies the minimum number of digits for d, i, 
o, u, x, or X conversions; the number of digits after the decimal point for e, E, f
conversions; the maximum number of digits for g and G conversions; the 
number of characters to be printed from a string for s conversion. The amount 
of padding overrides the field width. If an asterisk is used here, the next 
argument is converted to an integer and used for the value of the field width. If
the value is negative, it is treated as if it were missing. If only the period is 
present, the precision is taken to be zero.

length

h preceding a specifier to print an integral type causes it to be treated as if it 
were a short. (Note that the various sorts of short are always promoted to one
of the flavours of int when passed as an argument.) l works like h but applies 
to a long integral argument. L is used to indicate that a long double 
argument is to be printed, and only applies to the floating-point specifiers. 
These are cause undefined behaviour if they are used with the 'wrong' type of 
conversion.

conversion

See Table  9 .23.

Specifi
er

Effect
Default
precisio

n

d signed decimal 1

i signed decimal 1

u unsigned decimal 1

o unsigned octal 1

x unsigned hexadecimal (0-f) 1

X unsigned hexadecimal (0-F) 1



Specifi
er

Effect
Default
precisio

n

Precision specifies minimum number  of  digits,  expanded with
leading  zeros  if  necessary.  Printing  a  value  of  zero  with  zero
precision outputs no characters.

f
Print a double with precision digits (rounded) after the decimal
point. To suppress the decimal point use a precision of explicitly
zero. Otherwise, at least one digit appears in front of the point.

6

e, E

Print  a  double in  exponential  format,  rounded, with one digit
before the decimal point,  precision after it. A  precision of zero
suppresses the decimal point. There will be at least two digits in
the  exponent,  which  is  printed  as  1.23e15 in  e format,  or
1.23E15 in E format.

6

g,G

Use style  f, or  e (E with  G) depending on the exponent. If the
exponent is less than -4 or =  precision,  f is not used. Trailing
zeros are suppressed, a decimal point is only printed if there is a
following digit.

unspecifi
ed

c The  int argument is  converted to an unsigned char  and the
resultant character printed.

s
Print  a  string  up  to  precision digits  long.  If  precision is  not
specified, or is greater than the length of the string, the string
must be NUL terminated.

infinite

p Display the value of a (void *) pointer in a system-dependent
way.

n
The argument must be a pointer to an integer. The number of
characters  output  so  far  by  this  call  will  be  written  into  the
integer.

% A % -

Table 9.23 - Conversions

The functions that use these formats are described in  Table  9 .24. All need the
inclusion of <stdio.h>. Their declarations are as shown.

#include <stdio.h>
int fprintf(FILE *stream, const char *format, ...);
int printf(const char *format, ...);
int sprintf(char *s, const char *format, ...);
#include <stdarg.h>     /* as well as stdio.h */
int vfprintf(FILE *stream, const char *format, va list arg);
int vprintf(const char *format, va list arg);
int vsprintf(char *s, const char *format, va list arg);



Name Purpose

fprintf General  formatted  output  as  described.  Output  is  written  to  the  file
indicated by stream.

printf Identical to fprintf with a first argument equal to stdout.

sprintf Identical to  fprintf except that the output is not written to a file, but
written into the character array pointed to by s.

vfprintf
Formatted  output  as  for  fprintf,  but  with  the  variable  argument list
replaced by arg which must have been initialized by va_start. va_end is
not called by this function.

vprintf Identical to vfprintf with a first argument equal to stdout.

vsprintf
Formatted  output  as  for  sprintf,  but  with  the  variable  argument list
replaced by arg which must have been initialized by va_start. va_end is
not called by this function.

Table 9.24 - Functions performing formatted output

All of the above functions return the number of characters output, or a negative
value on error. The trailing null is not counted by sprintf and vsprintf.

Implementations must permit at least 509 characters to be produced by any single
conversion.

9.11.2. Input: the scanf family
A number of functions exist analogous to the printf family, but for the purposes of
input instead. The most immediate difference between the two families is that the
scanf group needs to be passed pointers to their arguments, so that the values
read can be assigned to the proper destinations. Forgetting to pass a pointer is a
very  common  error,  and  one  which  the  compiler  cannot  detect-the  variable
argument list prevents it.

The format string is used to control interpretation of a stream of input data, which
generally contains values to be assigned to the objects pointed to by the remaining
arguments to scanf. The contents of the format string may contain:

white space

This causes the input stream to be read up to the next non-white-space 
character.

ordinary character

Anything except white-space or % characters. The next character in the input 
stream must match this character.

conversion specification



This is a % character, followed by an optional * character (which suppresses 
the conversion), followed by an optional nonzero decimal integer specifying 
the maximum field width, an optional h, l or L to control the length of the 
conversion and finally a non-optional conversion specifier. Note that use of h, 
l, or L will affect the type of pointer which must be used.

Except for the specifiers  c,  n and  [,  a field of input is a sequence of non-space
characters starting at the first non-space character in the input. It terminates at the
first conflicting character or when the input field width is reached.

The  result  is  put  into  wherever  the  corresponding  argument  points,  unless  the
assignment is suppressed using the * mentioned already. The following conversion
specifiers may be used:

d i o u x

Convert a signed integer, a signed integer in a form acceptable to strtol, an 
octal integer, an unsigned integer and a hexadecimal integer respectively.

e f g

Convert a float (not a double).

s

Read a string, and add a null at the end. The string is terminated by 
whitespace on input (which is not read as part of the string).

[

Read a string. A list of characters, called the scan set follows the [. A ] delimits
the list. Characters are read until (but not including) the first character which is
not in the scan set. If the first character in the list is a circumflex ^, then the 
scan set includes any character not in the list. If the initial sequence is [^] or 
[], the ] is not a delimiter, but part of the list and another ] will be needed to 
end the list. If there is a minus sign (-) in the list, it must be either the first or 
the last character; otherwise the meaning is implementation defined.

c

Read a single character; white space is significant here. To read the first non-
white space character, use %1s. A field width indicates that an array of 
characters is to be read.

p

Read a (void *) pointer previously written out using the %p of one of the 
printfs.

%

A % is expected in the input, no assignment is made.



n

Return as an integer the number of characters read by this call so far.

The size specifiers have the effect shown in Table  9 .25.

Specifi
er

Modifies Converts

l d i o u x long int

h d i o u x short int

l e f double

L e f
long
double

Table 9.25 - Size specifiers

The functions are described below, with the following declarations:

#include <stdio.h>
int fscanf(FILE *stream, const char *format, ...);
int sscanf(const char *s, const char *format, ...);
int scanf(CONST char *format, ...);

Fscanf takes its input from the designated stream, scanf is identical to fscanf with
a first argument of stdin, and sscanf takes its input from the designated character 
array.

If  an input failure occurs before any conversion, EOF is returned. Otherwise, the
number of successful conversions is returned: this may be zero if no conversions are
performed.

An input failure is caused by reading EOF or reaching the end of the input string (as
appropriate). A conversion failure is caused by a failure to match the proper pattern
for a particular conversion.

9.12. Character I/O
A number of functions provide for character oriented I/O. Their declarations are:

#include <stdio.h>
/* character input */
int fgetc(FILE *stream);
int getc(FILE *stream);
int getchar(void);
int ungetc(int c, FILE *stream);
/* character output */
int fputc(int c, FILE *stream);
int putc(int c, FILE *stream);
int putchar(int c);



/* string input */
char *fgets(char *s, int n, FILE *stream);
char *gets(char *s);
/* string output */
int fputs(const char *s, FILE *stream);
int puts(const char *s);

Their descriptions are as follows.

9.12.1. Character input
These read an unsigned char from the input stream where specified, or otherwise
stdin.  In each case,  the next character is obtained from the input stream. It  is
treated as an unsigned char and converted to an int, which is the return value. On
End of File, the constant EOF is returned, and the end-of-file indicator is set for the
associated stream. On error, EOF is returned, and the error indicator is set for the
associated  stream.  Successive  calls  will  obtain  characters  sequentially.  The
functions, if  implemented as macros,  may evaluate their  stream argument more
than once, so do not use side effects here.

There is also the supporting ungetc routine, which is used to push back a character
on to a stream, causing it to become the next character to be read. This is not an
output operation and can never cause the external contents of a file to be changed.
A fflush, fseek, or rewind operation on the stream between the pushback and the
read will cause the pushback to be forgotten. Only one character of pushback is
guaranteed, and attempts to pushback EOF are ignored. In every case, pushing back
a number of characters then reading or discarding them leaves the file position
indicator unchanged. The file position indicator is decremented by every successful
call to  ungetc for a binary stream, but unspecified for a text stream, or a binary
stream which is positioned at the beginning of the file.

9.12.2. Character output
These are identical in description to the input functions already described, except
performing output. They return the character written, or  EOF on error. There is no
equivalent to End of File for an output file.

9.12.3. String output
These write strings to the output file;  stream where specified, otherwise  stdout.
The terminating null is not written. Non-zero is returned on error, zero otherwise.
Beware: puts appends a newline to the string output; fputs does not!

9.12.4. String input
Fgets reads a string into the array pointed to by s from the stream stream. It stops
on either EOF or the first newline (which it reads), and appends a null character. At
most n-1 characters are read (leaving room for the null).

Gets works similarly for the stream stdin, but discards the newline!



Both  return  s  if  successful,  or  a  null  pointer  otherwise.  In  each  case,  if  EOF is
encountered before any characters have been read, the array is unchanged and a
null  pointer  is  returned.  A read error  in  the middle of  a  string leaves the array
contents undefined and a null pointer is returned.

9.13. Unformatted I/O
This is simple: only two functions provide this facility, one for reading and one for
writing:

#include <stdio.h>
size_t fread(void *ptr, size_t size, size_t nelem, FILE *stream);
size_t fwrite(const void *ptr, size_t size, size_t nelem, FILE 
*stream);

In each case, the appropriate read or write is performed on the data pointed to by
ptr. Up to nelem elements, of size size, are transferred. Failure to transfer the full
number is an error only when writing; End of File can prevent the full number on
input.  The  number  of  elements  actually  transferred  is  returned.  To  distinguish
between End of File on input, or an error, use feof or ferror.

If size or nelem is zero, fread does nothing except to return zero.

An example may help.



#include <stdio.h>
#include <stdlib.h>
struct xx{
        int xx_int;
        float xx_float;
}ar[20];
main(){
        FILE *fp = fopen("testfile", "w");
        if(fwrite((const void *)ar,
                sizeof(ar[0]), 5, fp) != 5){
                fprintf(stderr,"Error writing\n");
                exit(EXIT_FAILURE);
        }
        rewind(fp);
        if(fread((void *)&ar[10],
                sizeof(ar[0]), 5, fp) != 5){
                if(ferror(fp)){
                        fprintf(stderr,"Error reading\n");
                        exit(EXIT_FAILURE);
                }
                if(feof(fp)){
                        fprintf(stderr,"End of File\n");
                        exit(EXIT_FAILURE);
                }
        }
        exit(EXIT_SUCCESS);
}

Example 9.88

9.14. Random access functions
The file I/O routines all work in the same way; unless the user takes explicit steps to
change the file position indicator, files will be read and written sequentially. A read
followed by a write followed by a read (if the file was opened in a mode to permit
that) will cause the second read to start immediately following the end of the data
just written. (Remember that  stdio insists on the user inserting a buffer-flushing
operation between each element of a read-write-read cycle.)  To control  this,  the
Random Access functions allow control over the implied read/write position in the
file. The file position indicator is moved without the need for a read or a write, and
indicates the byte to be the subject of the next operation on the file.

Three types of function exist which allow the file position indicator to be examined
or changed. Their declarations and descriptions follow.

#include <stdio.h>
/* return file position indicator */
long ftell(FILE *stream);
int fgetpos(FILE *stream, fpos_t *pos);
/* set file position indicator to zero */
void rewind(FILE *stream);
/* set file position indicator */



int fseek(FILE *stream, long offset, int ptrname);
int fsetpos(FILE *stream, const fpos_t *pos);

Ftell returns the current value (measured in characters) of the file position 
indicator if stream refers to a binary file. For a text file, a 'magic' number is 
returned, which may only be used on a subsequent call to fseek to reposition to the
current file position indicator. On failure, -1L is returned and errno is set.

Rewind sets the current file position indicator to the start of the file indicated by
stream. The file's error indicator is reset by a call of rewind. No value is returned.

Fseek allows the file position indicator for stream to be set to an arbitrary value (for
binary files), or for text files, only to a position obtained from ftell, as follows:

 In  the  general  case,  the  file  position  indicator  is  set  to  offset  bytes
(characters)  from a point  in  the file determined by the value of  ptrname.
Offset may be negative. The values of ptrname may be SEEK_SET, which sets
the file position indicator relative to the beginning of the file, SEEK_CUR, which
sets  the file position indicator  relative to its  current  value,  and  SEEK_END,
which sets the file position indicator relative to the end of the file. The latter
is not necessarily guaranteed to work properly on binary streams.

 For text files, offset must either be zero or a value returned from a previous
call  to  ftell for  the  same  stream,  and  the  value  of  ptrname must  be
SEEK_SET.

 Fseek clears the end of file indicator for the given stream and erases the
memory of any ungetc. It works for both input and output.

 Zero is returned for success, non-zero for a forbidden request.

Note that for  ftell and fseek it must be possible to encode the value of the file
position indicator into a long. This may not work for very long files, so the Standard
introduces fgetpos and fsetpos which have been specified in a way that removes
the problem.

Fgetpos stores the current file position indicator for stream in the object pointed to
by pos. The value stored is 'magic' and only used to return to the specified position
for the same stream using fsetpos.

Fsetpos works as described above, also clearing the stream's end-of-file indicator
and forgetting the effects of any ungetc operations.

For both functions, on success, zero is returned; on failure, non-zero is returned and
errno is set.

9.14.1. Error handling
The standard I/O functions maintain two indicators with each open stream to show
the end-of-file and error status of the stream. These can be interrogated and set by
the following functions:

#include <stdio.h>
void clearerr(FILE *stream);



int feof(FILE *stream);
int ferror(FILE *stream);
void perror(const char *s);

Clearerr clears the error and EOF indicators for the stream.

Feof returns non-zero if the stream's EOF indicator is set, zero otherwise.

Ferror returns non-zero if the stream's error indicator is set, zero otherwise.

Perror prints  a  single-line  error  message  on  the  program's  standard  output,
prefixed by the string pointed to by s, with a colon and a space appended. The error
message  is  determined  by  the  value  of  errno  and  is  intended  to  give  some
explanation of the condition causing the error. For example, this program produces
the error message shown:

#include <stdio.h>
#include <stdlib.h>
main(){
        fclose(stdout);
        if(fgetc(stdout) >= 0){
                fprintf(stderr, "What - no error!\n");
                exit(EXIT_FAILURE);
        }
        perror("fgetc");
        exit(EXIT_SUCCESS);
}
/* Result */
fgetc: Bad file number

Example 9.89

Well, we didn't say that the message had to be very meaningful!

9.15. General Utilities
These all involve the use of the header  <stdlib.h>, which declares a number of
types and macros and several functions of general use. The types and macros are
as follows:

size_t

Described at the start of this chapter.

div_t

This is the type of the structure returned by div.

ldiv_t

This is the type of the structure returned by ldiv.

NULL



Again, described at the start of this chapter.

EXIT_FAILURE

EXIT_SUCCESS

These may be used as arguments to exit.

MB_CUR_MAX

The maximum number of bytes in a multibyte character from the extended 
character set specified by the current locale.

RAND_MAX

This is the maximum value returned by the rand function.

9.15.1. String conversion functions
Three functions take a string as an argument and convert it to a number of the type
shown below:

#include <stdlib.h>
double atof(const char *nptr);
long atol(const char *nptr);
int atoi(const char *nptr);

For each of the functions, the number is converted and the result returned. None of
them guarantees to set  errno (although they may do in some implementations),
and  the  results  of  a  conversion  which  overflows  or  cannot  be  represented  is
undefined.

More sophisticated functions are:

#include <stdlib.h>
double strtod(const char *nptr, char **endptr);
long strtol(const char *nptr, char **endptr, int base);
unsigned long strtoul(const char *nptr,char **endptr, int base);

All three functions work in a similar way. Leading white space is skipped, then a
subject sequence,  resembling an appropriate  constant,  is  found,  followed by a
sequence of  unrecognized characters.  The trailing null  at  the end of  a  string is
always unrecognized. The subject sequence can be empty. The subject sequences
are determined as follows:

strtod

Optional + or -, followed by a digit sequence containing an optional decimal 
point character, followed by an optional exponent. No floating suffix will be 
recognized. If there is no decimal point present, it is assumed to follow the 
digit sequence.

strtol



Optional + or -, followed by a digit sequence. The digits are taken from the 
decimal digits or an upper or lower case letter in the range a-z of the English 
alphabet; the letters are given the values 10-35 respectively. The base 
argument determines which values are permitted, and may be zero, or 
otherwise 2-36. Only 'digits' with a value less than that of base are recognized.
A base of 16 permits the characters 0x or 0X to follow the optional sign. A base
of zero permits the input of characters in the form of a C integer constant. No 
integer suffix will be recognized.

strtoul

Identical to strtol but with no sign permitted.

If endptr is non-null, the address of the first unrecognized character is stored in the
object that it points to. If the subject sequence is empty or has the wrong form, this
is the value of nptr.

If a conversion can be performed, the functions convert the number and return its
value, taking into account a leading sign where permitted. Otherwise they return
zero. On overflow or error the action is as follows:

strtod

On overflow, returns ±HUGE_VAL according to the sign of the result; on 
underflow, returns zero. In either case, errno is set to ERANGE.

strtol

On overflow, LONG_MAX or LONG_MIN is returned according to the sign of the 
result, errno is set to ERANGE.

strtoul

On overflow, ULONG_MAX is returned, errno is set to ERANGE.

If the locale is not the "C" locale, there may be other subject sequences recognised
depending on the implementation.

9.15.2. Random number generation
Provision for pseudo-random number generation is made by the following functions.

#include <stdlib.h>
int rand(void);
void srand(unsigned int seed);

Rand returns a pseudo-random number in the range 0 to RAND_MAX, which has a 
value of at least 32767.

Srand allows a given starting point in the sequence to be chosen according to the
value of seed. If srand is not called before rand, the value of the seed is taken to be



1. The same sequence of values will always be returned from rand for a given value
of seed.

The Standard describes an algorithm which may be used to implement  rand and
srand. In practice, most implementations will probably use this algorithm.

9.15.3. Memory allocation
These functions are used to allocate and free storage. The storage so obtained is
only guaranteed to be large enough to store an object of the specified type and
aligned  appropriately  so  as  not  to  cause  addressing  exceptions.  No  further
assumptions can be made.

#include <stdlib.h>
void *malloc(size_t size);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);
void *free(void *ptr);

All of the memory allocation functions return a pointer to allocated storage of size
size bytes. If there is no free storage, they return a null pointer. The differences
between them are that calloc takes an argument nmemb which specifies the number
of elements in an array, each of whose members is size bytes, and so allocates a
larger piece of store (in general) than malloc. Also, the store allocated by malloc is
not  initialized,  whereas  calloc sets  all  bits  in  the  storage  to  zero.  This  is  not
necessarily the equivalent representation of floating-point zero, or the null pointer.

Realloc is  used to change the size of  the thing pointed to by  ptr,  which may
require some copying to be done and the old storage freed. The contents of the
object pointed to by ptr is unchanged up to the smaller of the old and the new sizes.
If ptr is null, the behaviour is identical to malloc with the appropriate size.

Free is used to free space previously obtained with one of the allocation routines. It
is permissible to give free a null pointer as the argument, in which case nothing is
done.

If an attempt is made to free store which was never allocated, or has already been
freed, the behaviour is undefined. In many environments this causes an addressing
exception which aborts the program, but this is not a reliable indicator.

9.15.4. Communication with the environment
A miscellany of functions is found here.

#include <stdlib.h>
void abort(void);
int atexit(void (*func)(void));
void exit(int status);
char *getenv(const char *name);
int system(const char *string);

abort



Causes abnormal program termination to occur, by raising the SIGABRT signal. 
Abnormal termination is only prevented if the signal is being caught, and the 
signal handler does not return. Otherwise, output files may be flushed and 
temporary files may be removed according to implementation definition, and 
an 'unsuccessful termination' status returned to the host environment. This 
function cannot return.

atexit

The argument func becomes a function to be called, without arguments, when 
the program terminates. Up to at least 32 such functions may be registered, 
and are called on program termination in reverse order of their registration. 
Zero is returned for success, non-zero for failure.

exit

Normal program termination occurs when this is called. First, all of the 
functions registered using atexit are called, but beware-by now, main is 
considered to have returned and no objects with automatic storage duration 
may safely be used. Then, all the open output streams are flushed, then 
closed, and all temporary files created by tmpfile are removed. Finally, the 
program returns control to the host environment, returning an implementation-
defined form of successful or unsuccessful termination status depending on 
whether the argument to exit was EXITSUCCESS or EXIT FAILURE respectively.
For compatibility with Old C, zero can be used in place of EXITSUCCESS, but 
other values have implementation-defined effects. Exit cannot return.

getenv

The implementation-defined environment list is searched to find an item which 
corresponds to the string pointed to by name. A pointer to the item is returned-
it points to an array which must not be modified by the program, but may be 
overwritten by a subsequent call to getenv. A null pointer is returned if no item
matches.

The purpose and implementation of the environment list depends on the host 
environment.

system

An implementation-defined command processor is passed the string string. A 
null pointer will cause a return of zero if no command processor exists, non-
zero otherwise. A non-null pointer causes the command to be processed. The 
effect of the command and the value returned are implementation defined.

9.15.5. Searching and sorting
Two functions exist in this category: one for searching an already sorted list, the
other for sorting an unsorted list. They are completely general, handling arrays of
arbitrary size with elements of arbitrary size.



To enable them to compare two elements, the user provides a comparison function,
which is called with pointers to two of the elements as its arguments. It returns a
value less than, equal to or greater than zero depending on whether the first pointer
points to an element considered to be less than, equal to or greater than the object
pointed to by the second pointer, respectively.

#include <stdlib.h>
void *bsearch(const void *key, const void *base,
        size_t nmemb, size_t size,
        int (*compar)(const void *, const void *));
void *qsort(const void *base, size_t nmemb,
        size_t size,
        int (*compar)(const void *, const void *));

For both functions, nmemb is the number of elements in the array, size is the size in
bytes of an array element and compar is the function to be called to compare them.
Base is a pointer to the base of the array.

Qsort will sort the array into ascending order.

Bsearch assumes that  the array  is  already sorted and returns a pointer to  any
element it finds that compares equal to the object pointed to by key. A null pointer
is returned if no match is found.

9.15.6. Integer arithmetic functions
These provide ways of finding the absolute value of an integral argument and the
quotient and remainder of a division, for both int and long types.

#include <stdlib.h>
int abs(int j);
long labs(long j);
div_t div(int numerator, int denominator);
ldiv_t ldiv(long numerator, long denominator);

abs

labs

These return the absolute value of their argument-choose the appropriate one 
for your needs. The behaviour is undefined if the value cannot be represented-
this can happen in two's complement systems where the most negative 
number has no positive equivalent.

div

ldiv

These divide the numerator by the denominator and return a structure of the 
indicated type. In each case the structure will contain a member called quot 
which contains the quotient of the division truncated towards zero, and a 
member called rem which will contain the remainder. The type of each 



member is int for div and long for ldiv. Provided that the result could be 
represented, quot*denominator+rem == numerator.

9.15.7. Functions using multibyte characters
The  LC_CTYPE category  of  the  current  locale  affects  the  behaviour  of  these
functions. For an encoding that is state-dependent, each function is put in its initial
state by a call  in which its character  pointer argument,  s,  is a null  pointer.  The
internal state of the function is altered as necessary by subsequent calls when s is
not a null  pointer.  If  s is a null  pointer,  the functions return a non-zero value if
encodings  are  state-dependent,  otherwise  zero.  If  the  LC_CTYPE category  is
changed, the shift state of the functions will become indeterminate.

The functions are:

#include <stdlib.h>
int mblen(const char *s, size_t n);
int mbtowc(wchar_t *pwc, const char *s, size_t n);
int wctomb(char *s, wchar_t wchar);
size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);
size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

mblen

Returns the number of bytes that are contained in the multibyte character 
pointed to by s, or -1 if the first n bytes do not form a valid multibyte 
character. If s points to the null character, zero is returned.

mbtowc

Converts the multibyte character pointed to by s to the corresponding code of 
type wchar_t and stores the result in the object pointed to by pwc, unless pwc 
is a null pointer. Returns the number of bytes successfully converted, or -1 if 
the first n bytes do not form a valid multibye character. No more than n bytes 
pointed to by s are examined. The value returned will not be more than n or 
MB_CUR_MAX.

wctomb

Converts the code whose value is in wchar to a sequence of bytes representing
the corresponding multibyte character, and stores the result in the array 
pointed to by s, if s is not a null pointer. Returns the number of bytes that are 
contained in the multibyte character, or -1 if the value in wchar does not 
correspond to a valid multibyte character. At most, MB_CUR_MAX bytes are 
processed.

mbstowcs

Converts the sequence of multibyte characters, beginning in the initial shift 
state, in the array pointed to by s, into a sequence of corresponding codes 
which are then stored in the array pointed to by pwcs. Not more than n values 
will be placed in pwcs. Returns -1 if an invalid multibyte character is 



encountered, otherwise returns the number of array elements modified, 
excluding the terminating null-code.

If the two objects overlap, the behaviour is undefined.

wcstombs

Converts the sequence of codes pointed to by pwcs to a sequence of multibyte 
characters, beginning in the initial shift state, which are then stored in the 
array pointed to by s. Conversion stops when either a null-code is encountered
or n bytes have been written to s. Returns -1 if a code is encountered which 
does not correspond to a valid multibyte character, otherwise the number of 
bytes written, excluding the terminating null-code.

If the two objects overlap, the behaviour is undefined.

9.16. String handling
Numerous functions exist to handle strings. In C, a string is an array of characters
terminated  by  a  null.  In  all  cases,  the  functions  expect  a  pointer  to  the  first
character in the string. The header <string.h> declares these functions.

9.16.1. Copying
The functions for this purpose are:

#include <string.h>
void *memcpy(void *s1, const void *s2, size_t n);
void *memmove (void *s1, const void *s2, size_t n);
char *strcpy(char *s1, const char *s2);
char *strncpy(char *s1, const char *s2, size_t n);
char *strcat(char *s1, const char *s2);
char *strncat(char *s1, const char *s2, size_t n);

memcpy

This copies n bytes from the place pointed to by s2 to the place pointed to by 
s1. If the objects overlap, the result is undefined. The value of s1 is returned.

memmove

Identical to memcpy, but works even for overlapping objects. It may be 
marginally slower, though.

strcpy

strncpy

Both of these copy the string pointed to by s2 into the string pointed to by s1, 
including the trailing null. Strncpy will copy at most n characters, and pad with
trailing nulls if s2 is shorter than n characters. If the strings overlap, the 
behaviour is undefined. They return s1.



strcat

strncat

Both append the string in s2 to s1, overwriting the null at the end of s1. A final 
null is always written. At most n characters are copied from s2 by strncat, 
which means that for safety the destination string should have room for its 
original length (not counting the null) plus n + 1 characters. They return s1.

9.16.2. String and byte comparison
These comparison functions are used to compare arrays of bytes. This obviously
includes  the  traditional  C  strings,  which  are  an  array  of  char (bytes)  with  a
terminating null. All of these functions work by comparing a byte at a time, and
stopping either when two bytes differ (in which case they return the sign of the
difference between the two bytes), or the arrays are considered to be equal: no
differences were found, and the length of the arrays was equal to the specified
amount, or the null was found at the end of a string comparison.

For all except strxfrm, the value returned is less than, equal to or greater than zero
depending on whether the first object was considered to be less than, equal to or
greater than the second.

#include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);
int strcmp(const char *s1, const char *s2);
int strncmp(const char *s1, const char *s2, size_t n);
size_t strxfrm(char *to, const char *from,
int strcoll(const char *s1, const char *s2);

memcmp

Compares the first n characters in the objects pointed to by s1 and s2. It is 
very dodgy to compare structures in this way, because unions or 'holes' 
caused by alignment padding can contain junk.

strcmp

Compares the two strings. This is one of the most commonly used of the 
string-handling functions.

strncmp

As for strcmp, but compares at most n characters.

strxfrm

The string in from is converted (by some magic), and placed wherever to 
points. At most maxsize characters (including the trailing null) are written into 
the destination. The magic guarantees that two such transformed strings will 
give the same comparison with each other for the user's current locale when 
using strcmp, as when strcoll is applied to the original two strings.



In all cases, the length of the resulting string (not counting its terminating null)
is returned. If the value is equal to or greater than maxsize, the contents of *to
is undefined. If maxsize is zero, s1 may be a null pointer.

If the two objects overlap, the behaviour is undefined.

strcoll

This function compares the two strings according to the collating sequence 
specified by the current locale.

9.16.3. Character and string searching functions
#include <string.h>
void *memchr(const void *s, int c, size_t n);
char *strchr(const char *s, int c);
size_t strcspn(const char *s1, const char *s2);
char *strpbrk(const char *s1, const char *s2);
char *strrchr(const char *s, int c);
size_t strspn(const char *s1, const char *s2);
char *strstr(const char *s1, const char *s2);
char *strtok(const char *s1, const char *s2);

memchr

Returns a pointer to the first occurrence in the initial n characters of *s of the 
(unsigned char)c. Returns null if there is no such occurrence.

strchr

Returns a pointer to the first occurrence of (char)c in *s, including the null in 
the search. Returns null if there is no such occurrence.

strcspn

Returns the length of the initial part of the string s1 which contains no 
characters from s2. The terminating null is not considered to be part of s2.

strpbrk

Returns a pointer to the first character in s1 which is any of the characters in 
s2, or null if there is none.

strrchr

Returns a pointer to the last occurrence in s1 of (char)c counting the null as 
part of s1, or null if there is none.

strspn

Returns the length of the initial part of s1 consisting entirely of characters from
s1.



strstr

Returns a pointer to the first occurrence in s1 of the string s2, or null if there is 
none.

strtok

Breaks the string in s1 into 'tokens', each delimited by one of the characters 
from s2 and returns a pointer to the first token, or null if there is none. 
Subsequent calls with (char *)0 as the value of s1 return the next token in 
sequence, with the extra fun that s2 (and hence the delimiters) may differ on 
each subsequent call. A null pointer is returned if no tokens remain.

9.16.4. Miscellaneous functions
#include <string.h>
void *memset(void *s, int c, size_t n);
char *strerror(int errnum);
size_t strlen(const char *s);

memset

Sets the n bytes pointed to by s to the value of (unsigned char)c. Returns s.

strlen

Returns the length of the string s not counting the terminating null. This is a 
very widely used function.

strerror

Returns a pointer to a string describing the error number errnum. This string 
may be changed by subsequent calls to strerror. Useful for finding out what 
the values in errno mean.

9.17. Date and time
These  functions  deal  with  either  'elapsed'  or  'calendar'  time.  They  share  the
<time.h> header, which declares the functions as necessary and also the following:

CLOCKS_PER_SEC

This is the number of 'ticks' per second returned by the clock function.

clock_t

time_t

These are arithmetic types used to represent different forms of time.

struct tm

This structure is used to hold the values representing a calendar time. It 
contains the following members, with the meanings as shown.



int tm_sec      /* seconds after minute [0-61] (61 allows for 2 leap-
seconds)*/
int tm_min      /* minutes after hour [0-59] */
int tm_hour     /* hours after midnight [0-23] */
int tm_mday     /* day of the month [1-31] */
int tm_mon      /* month of year [0-11] */
int tm_year     /* current year-1900 */
int tm_wday     /* days since Sunday [0-6] */
int tm_yday     /* days since January 1st [0-365] */
int tm_isdst    /* daylight savings indicator */

The tm_isdst member is positive if daylight savings time is in effect, zero if 
not and negative if that information is not available.

The time manipulation functions are the following:

#include <time.h>
clock_t clock(void);
double difftime(time_t time1, time_t time2);
time_t mktime(struct tm *timeptr);
time_t time(time_t *timer);
char *asctime(const struct tm *timeptr);
char *ctime(const time_t *timer);
struct tm *gmtime(const time_t *timer);
struct tm *localtime(const time_t *timer);
size_t strftime(char *s, size_t maxsize,
  const char *format,
  const struct tm *timeptr);

The functions  asctime,  ctime,  gmtime,  localtime,  and  strftime all  share static
data structures, either of type struct tm or char [], and calls to one of them may
overwrite the data stored by a previous call to one of the others. If this is likely to
cause problems, their users should take care to copy any values needed.

clock

Returns the best available approximation to the time used by the current 
invocation of the program, in 'ticks'. (clock_t)-1 is returned if no value is 
available. To find the actual time used by a run of a program, it is necessary to 
find the difference between the value at the start of the run and the time of 
interest-there is an implementation-defined constant factor which biases the 
value returned from clock. To determine the time in seconds, the value 
returned should be divided by CLOCKS_PER_SEC.

difftime

This returns the difference in seconds between two calendar times.

mktime



This returns the calendar time corresponding to the values in a structure 
pointed to by timeptr, or (time_t)-1 if the value cannot be represented.
The tm_wday and tm_yday members of the structure are ignored, the other 
members are not restricted to their usual values. On successful conversion, the
members of the structure are all set to appropriate values within their normal 
ranges. This function is useful to find out what value of a time_t corresponds 
to a known date and time.

time

Returns the best approximation to the current calendar time in an unspecified 
encoding. (time_t)-1 is returned if the time is not available.

asctime

Converts the time in the structure pointed to by timeptr into a string of the 
form

Sun Sep 16 01:03:52 1973\n\0

the example being taken from the Standard. The Standard defines the 
algorithm used, but the important point to notice is that all the fields within 
that string are of constant width and relevant to most English-speaking 
communities. The string is stored in a static structure which may be 
overwritten by a subsequent call to one of the other time-manipulation 
functions (see above).

ctime

Equivalent to asctime(localtime(timer)). See asctime for the return value.

gmtime

Returns a pointer to a struct tm set to represent the calendar time pointed to 
by timer. The time is expressed in terms of Coordinated Universal Time (UTC) 
(formerly Greenwich Mean Time). A null pointer is returned if UTC is not 
available.

localtime

Converts the time pointed to by timer into local time and puts the results into 
a struct tm, returning a pointer to that structure.

strftime

Fills the character array pointed to by s with at most maxsize characters. The 
format string is used to format the time represented in the structure pointed 
to timeptr. Characters in the format string (including the terminating null) are 
copied unchanged into the array, unless one of the following format directives 
is found-then the value specified below is copied into the destination, as 
appropriate to the locale.



%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c date and time representation

%d decimal day of month number 01-31

%H hour 00-23 (24 hour format)

%I hour 01-12 (12 hour format)

%j day of year 001-366

%m month 01-12

%M minute 00-59

%p local equivalent of 'AM' or 'PM'

%S second 00-61

%U week number in year 00-53 (Sunday is first day
of week

%w weekday, 0-6 (Sunday is 0)

%W week  number  in  year  00-53  (Monday  is  first
day of week

%x local date representation

%X local time representation

%y year without century prefix 00-99

%Y year with century prefix

%Z timezone  name,  or  no  characters  if  no
timezone exists

%% a % character

The total number of characters copied into *s is returned, excluding the null. If 
there was not room (as determined by maxsize) for the trailing null, zero is 
returned.



9.18. Summary
It will almost certainly be the standardization of the run-time library that has the
most effect on the portability of C programs. Prospective users of C really should
read through this chapter carefully and familiarize themselves with its contents. The
lack of a widely implemented, portable library was historically the biggest single
barrier to portability.

If  you are writing programs for embedded systems, bad luck! The library is  not
defined for  stand-alone applications,  but  in  practice  we can  expect  suppliers  to
produce a stand-alone library package too. It will  probably come without the file
handling, but there is no reason why, say, the string-handling functions should not
work just as well in hosted and unhosted environments.



Chapter 10: Complete Programs in C

10.1. Putting it all together
Having considered the language and the libraries defined by the Standard, all that
now remains  is  to  demonstrate  what  complete programs look like.  This  chapter
contains some example programs which illustrate how to combine these elements
to build programs.

However, just before these examples are presented there is one more aspect of the
C language to discuss.

10.2. Arguments to main
For those writing programs which will run in a hosted environment, arguments to
main provide a useful opportunity to give parameters to programs. Typically, this
facility is used to direct the way the program goes about its task. It's particularly
common to provide file names to a program through its arguments.

The declaration of main looks like this:

int main(int argc, char *argv[]);

This indicates that main is a function returning an integer. In hosted environments
such as DOS or UNIX, this value or exit status is passed back to the command line
interpreter.  Under  UNIX,  for  example,  the  exit  status  is  used  to  indicate  that  a
program completed successfully (a zero value) or some error occurred (a non-zero
value).  The  Standard  has  adopted  this  convention;  exit(0) is  used  to  return
'success' to its host environment, any other value is used to indicate failure. If the
host environment itself  uses a different numbering convention,  exit will  do the
necessary  translation.  Since  the  translation  is  implementation-defined,  it  is  now
considered better practice to use the values defined in <stdlib.h>: EXIT_SUCCESS
and EXIT_FAILURE.

There are at least two arguments to  main:  argc and  argv. The first of these is a
count of  the arguments supplied to the program and the second is  an array of
pointers  to  the strings  which  are  those  arguments-its  type is  (almost)  'array  of
pointer to char'. These arguments are passed to the program by the host system's
command line interpreter or job control language.

The  declaration  of  the  argv argument  is  often  a  novice  programmer's  first
encounter with pointers to arrays of pointers and can prove intimidating. However,
it is really quite simple to understand. Since  argv is used to refer to an array of
strings, its declaration will look like this:

char *argv[]



Remember  too  that  when  it  is  passed  to  a  function,  the  name  of  an  array  is
converted to the address of its first element. This means that we can also declare
argv as char **argv; the two declarations are equivalent in this context.

Indeed, you will often see the declaration of  main expressed in these terms. This
declaration is exactly equivalent to that shown above:

int main(int argc, char **argv);

When a program starts, the arguments to main will have been initialized to meet
the following conditions:

 argc is greater than zero.
 argv[argc] is a null pointer.
 argv[0] through to argv[argc-1] are pointers to strings whose meaning will

be determined by the program.
argv[0] will be a string containing the program's name or a null string if that is not
available.  Remaining elements of  argv represent  the arguments supplied to the
program.  In  cases  where  there  is  only  support  for  single-case  characters,  the
contents of these strings will be supplied to the program in lower-case.

To illustrate  these points,  here is  a  simple program which writes the arguments
supplied to main on the program's standard output.

#include <stdio.h>
#include <stdlib.h>
int main(int argc, char **argv)
{
        while(argc--)
                printf("%s\n", *argv++);
        exit(EXIT_SUCCESS);
}
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If the program name is  show_args and it has arguments  abcde,  text, and  hello
when it is run, the state of the arguments and the value of argv can be illustrated
like this:

Figure 1.14 - Arguments to a program



Each time that argv is incremented, it is stepped one item further along the array of
arguments. Thus after the first iteration of the loop,  argv will point to the pointer
which in turn points to the abcde argument. This is shown in Figure  1 .15.

Figure 1.15 - Arguments to a program after incrementing argv

On the system where this program was tested, a program is run by typing its name
and then the arguments, separated by spaces. This is what happened (the  $ is a
prompt):

$ show_args abcde text hello
show_args
abcde
text
hello
$

10.3. Interpreting program arguments
The  loop  used  to  examine  the  program  arguments  in  the  example  above  is  a
common C idiom which you will see in many other programs. An additional common
idiom is to use 'options' to control  the behaviour of the program (these are also
sometimes called switches or flags). Arguments which start with a '-' are taken to
introduce one or more single-letter option indicators, which can be run together or
provided separately:

progname -abxu file1 file2
progname -a -b -x -u file1 file2

The idea is that each of the options selects a particular aspect from the program's
repertoire  of  features.  An  extension  to  that  idea  is  to  allow  options  to  take
arguments; if the  -x option is specified to take an argument, then this is how it
might be used:

progname -x arg file1

so that the arg argument is associated with the option. The options function below
automates  the processing of  this  style of  use,  with the additional  (common but



preferably considered obsolescent) support for the provision of option arguments
immediately following the option letter, as in:

progname -xarg file1

In either of the above cases, the options routine returns the character 'x' and sets a
global pointer, OptArg, to point to the value arg.

To use this routine, a program must supply a list of valid option letters in the form of
a string; when a letter in this string is followed by a ':' this indicates that the option
letter is to be followed by an argument. When the program is run, it is then simply a
question  of  repeatedly  calling  the  options routine  until  no  more  option  letters
remain to be found.

It seems to be a fact of life that functions which scan text strings looking for various
combinations  or  patterns  within  them  end  up  being  hard  to  read;  if  it's  any
consolation they aren't all that easy to write either. The code that implements the
options is definitely one of the breed, although by no means one of the worst:



/*
* options() parses option letters and option arguments from the argv 
list.
* Succesive calls return succesive option letters which match one of
* those in the legal list. Option letters may require option arguments
* as indicated by a ':' following the letter in the legal list.
* for example, a legal list of "ab:c" implies that a, b and c are
* all valid options and that b takes an option argument. The option
* argument is passed back to the calling function in the value
* of the global OptArg pointer. The OptIndex gives the next string
* in the argv[] array that has not already been processed by 
options().
*
* options() returns -1 if there are no more option letters or if
* double SwitchChar is found. Double SwitchChar forces options()
* to finish processing options.
*
* options() returns '?' if an option not in the legal set is
* encountered or an option needing an argument is found without an
* argument following it.
*
*/
#include <stdio.h>
#include <string.h>
static const char SwitchChar = '-';
static const char Unknown = '?';
int OptIndex = 1;       /* first option should be argv[1] */
char *OptArg = NULL;    /* global option argument pointer */
int options(int argc, char *argv[], const char *legal)
{
        static char *posn = "";  /* position in argv[OptIndex] */
        char *legal_index = NULL;
        int letter = 0;
        if(!*posn){
                /* no more args, no SwitchChar or no option letter ? 
*/
                if((OptIndex >= argc) ||
                        (*(posn = argv[OptIndex]) != SwitchChar) ||
                        !*++posn)
                                return -1;
                /* find double SwitchChar ? */
                if(*posn == SwitchChar){
                        OptIndex++;
                        return -1;
                }
        }
        letter = *posn++;
        if(!(legal_index = strchr(legal, letter))){
                if(!*posn)
                        OptIndex++;
                return Unknown;
        }



        if(*++legal_index != ':'){
                /* no option argument */
                OptArg = NULL;
                if(!*posn)
                        OptIndex++;
        } else {
                if(*posn)
                        /* no space between opt and opt arg */
                        OptArg = posn;
                else
                        if(argc <= ++OptIndex){
                                posn = "";
                                return Unknown;
                        } else
                                OptArg = argv[OptIndex];
                posn = "";
                OptIndex++;
        }
        return letter;
}
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10.4. A pattern matching program
This section presents a complete program which makes use of  option letters  as
program arguments to control the way it performs its job.

The  program  first  processes  any  arguments  that  resemble  options;  the  first
argument which is not an option is remembered for use as a 'search string'. Any
remaining arguments are used to specify file names which are to be read as input to
the program; if no file names are provided, the program reads from its standard
input instead. If a match for the search string is found in a line of input text, that
whole line is printed on the standard output.

The options function is used to process all option letters supplied to the program.
This program recognises five options: -c, -i, -l, -n, and -v. None of these options
is required to be followed by an option argument. When the program is run with one
or more of these options its behaviour is modified as follows:

-c

the program prints a count of the total number of matching lines it found in the
input file(s). No lines of text are printed.

-i

when searching for a match, the case of letters in both the input lines and 
string is ignored.

-l



each line of text printed on the output is prefixed with the line number being 
examined in the current input file.

-n

each line of text printed on the output is prefixed with the name of the file that
contained the line.

-v

the program prints only lines which do not match the string supplied.

When the program finishes, it returns an exit status to indicate one of the following
situations:

EXIT_SUCCESS

at least one match was found.

EXIT_FAILURE

no match was found, or some error occurred.

The program makes extensive use of standard library functions to do all of the hard
work. For example, all of the file handling is performed by calls to stdio functions.
Notice too that the real heart of the program, the string matching, is simply handled
by a call to the strstr library function.

Here is the code for the whole program. Of course, to get this to work you would
need to compile it together with the code for the options routine presented above.



/*
* Simple program to print lines from a text file which contain
* the "word" supplied on the command line.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
/*
* Declarations for the pattern program
*
*/
#define CFLAG 0x001     /* only count the number of matching lines */
#define IFLAG 0x002     /* ignore case of letters */
#define LFLAG 0x004     /* show line numbers */
#define NFLAG 0x008     /* show input file names */
#define VFLAG 0x010     /* show lines which do NOT match */
extern int OptIndex;    /* current index into argv[] */
extern char *OptArg;    /* global option argument pointer */
/*
* Fetch command line switches from arguments to main()
*/
int options(int, char **, const char *);
/*
* Record the required options ready to control program beaviour
*/
unsigned set_flags(int, char **, const char *);
/*
* Check each line of the input file for a match
*/
int look_in(const char *, const char *, unsigned);
/*
* Print a line from the input file on the standard output
* in the format specified by the command line switches
*/
void print_line(unsigned mask, const char *fname,
                int lnno, const char *text);
static const char
                /* Legal options for pattern */
        *OptString = "cilnv",
                /* message when options or arguments incorrect */
        *errmssg = "usage: pattern [-cilnv] word [filename]\n";
int main(int argc, char *argv[])
{
        unsigned flags = 0;
        int success = 0;
        char *search_string;
        if(argc < 2){
                fprintf(stderr, errmssg);
                exit(EXIT_FAILURE);
        }



        flags = set_flags(argc, argv, OptString);
        if(argv[OptIndex])
                search_string = argv[OptIndex++];
        else {
                fprintf(stderr, errmssg);
                exit(EXIT_FAILURE);
        }
        if(flags & IFLAG){
                /* ignore case by dealing only with lowercase */
                char *p;
                for(p = search_string ; *p ; p++)
                        if(isupper(*p))
                                *p = tolower(*p);
        }
        if(argv[OptIndex] == NULL){
                /* no file name given, so use stdin */
                success = look_in(NULL, search_string, flags);
        } else while(argv[OptIndex] != NULL)
                success += look_in(argv[OptIndex++],
                                search_string, flags);
        if(flags & CFLAG)
                printf("%d\n", success);
        exit(success ? EXIT_SUCCESS : EXIT_FAILURE);
}
unsigned set_flags(int argc, char **argv, const char *opts)
{
        unsigned flags = 0;
        int ch = 0;
        while((ch = options(argc, argv, opts)) != -1){
                switch(ch){
                        case 'c':
                                flags |= CFLAG;
                                break;
                        case 'i':
                                flags |= IFLAG;
                                break;
                        case 'l':
                                flags |= LFLAG;
                                break;
                        case 'n':
                                flags |= NFLAG;
                                break;
                        case 'v':
                                flags |= VFLAG;
                                break;
                        case '?':
                                fprintf(stderr, errmssg);
                                exit(EXIT_FAILURE);
                }
        }
        return flags;
}



int look_in(const char *infile, const char *pat, unsigned flgs)
{
        FILE *in;
        /*
         * line[0] stores the input line as read,
         * line[1] is converted to lower-case if necessary
         */
        char line[2][BUFSIZ];
        int lineno = 0;
        int matches = 0;
        if(infile){
                if((in = fopen(infile, "r")) == NULL){
                        perror("pattern");
                        return 0;
                }
        } else
                in = stdin;
        while(fgets(line[0], BUFSIZ, in)){
                char *line_to_use = line[0];
                lineno++;
                if(flgs & IFLAG){
                        /* ignore case */
                        char *p;
                        strcpy(line[1], line[0]);
                        for(p = line[1] ; *p ; *p++)
                                if(isupper(*p))
                                        *p = tolower(*p);
                        line_to_use = line[1];
                }
                if(strstr(line_to_use, pat)){
                        matches++;
                        if(!(flgs & VFLAG))
                                print_line(flgs, infile, lineno, 
line[0]);
                } else if(flgs & VFLAG)
                        print_line(flgs, infile, lineno, line[0]);
        }
        fclose(in);
        return matches;
}
void print_line(unsigned mask, const char *fname,
                        int lnno, const char *text)
{
        if(mask & CFLAG)
                return;
        if(mask & NFLAG)
                printf("%s:", *fname ? fname : "stdin");
        if(mask & LFLAG)
                printf(" %d :", lnno);
        printf("%s", text);
}
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10.5. A more ambitious example
Finally here is a set of programs designed to cooperate and manipulate a single
data file in a coherent, robust fashion.

The programs are intended to help keep track of a ladder of players who compete
against each other at some game, squash or chess perhaps.

Each player has a rank from one to n, where n is the number of players who play,
one  being  the  highest  rank  on  the  ladder.  Players  lower  down  the  ladder  may
challenge players above them and, if the lower ranked player wins, he or she moves
up taking the rank of the player who loses. The loser in such a situation, and any
other players between challenger and loser, are then moved down one rank. If a
challenger does not win, the rankings on the ladder remain unchanged.

To provide some measure of equilibrium in the rankings, a player may challenge any
higher ranked player, but only wins over players ranked three (or less) higher will
allow the challenger to move up the rankings. This ensures that new players added
to the bottom of the ladder are forced to play more than one game to reach the top
of the ladder!

There are three basic tasks which are required to record all the information needed
to keep such a ladder going:

 Printing the ladder.

 Addition of new players.

 Recording of results.

The design to be used here provides a separate program to perform each of these
tasks. Having made this decision it is clear that a number of operations needed by
each program will be common to all three. For example, all three will need to read
player records from the data file, at least two will need to write player records into
the data file.

This suggests that a good approach would be to design a 'library' of functions which
manipulate player records and the data file which may in turn be combined to make
up the programs which maintain the ladder.

Before this can be done it  will  be necessary to define the data structure  which
represents player records. The minimum information necessary to record for each
player consists of player name and rank. However, to allow for more interesting
statistics to be compiled about the ladder let us chose to also keep a record of
games won, games lost and the time when the last game was played. Clearly this
disparate set of information is best collected together in a structure.

The player structure declaration together with the declarations of the player library
functions  are  combined  together  in  the  player.h header  file.  The  data  file  is
maintained as lines of text, each line corresponding to a record; this requires input



and output conversions to be performed but is a useful technique if the conversions
don't cost too much in performance terms.

/*
*
* Declarations and definitions for functions which manipulate player
* records which form the basis of the ladder
*
*/
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define NAMELEN 12              /* max. for player name length */
#define LENBUF 256              /* max. for input buffer length */
#define CHALLENGE_RANGE 3       /* number of higher ranked players who
may
                                * be challenged to move up in rank
                                */
extern char *OptArg;
typedef struct {
        char    name[NAMELEN+1];
        int     rank;
        int     wins;
        int     losses;
        time_t  last_game;
} player;
#define NULLPLAYER (player *)0
extern const char *LadderFile;
extern const char *WrFmt;       /* used when writing records */
extern const char *RdFmt;       /* used when reading records */
/*
* Declarations for routines used to manipulate the player records
* and the ladder file which are defined in player.c
*
*/
int     valid_records(FILE *);
int     read_records(FILE *, int, player *);
int     write_records(FILE *, player *, int);
player *find_by_name(char *, player *, int);
player *find_by_rank(int, player *, int);
void    push_down(player *, int, int, int);
int     print_records(player *, int);
void    copy_player(player *, player *);
int     compare_name(player *, player *);
int     compare_rank(player *, player *);
void    sort_players(player *, int);
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Here is the code for the  player.c file implementing the generic functions which
manipulate player records and the data file. These functions can be combined with



more specific routines to make up the three programs required to maintain the
ladder.

Notice that to manipulate the player records, each program is required to read the
entire data file into a dynamically allocated array. Before this array is written back to
the data file, it is assumed that the records it contains will have been sorted into
rank order. If the records do not remain sorted, the push_down function will produce
some 'interesting' results!



/*
* Generic functions to manipulate the ladder data file and
* player records.
*
*/
#include "player.h"
const char *LadderFile = "ladder";
const char *WrFmt = "%s %d      %d      %d      %ld\n";
const char *RdFmt = "%s %d      %d      %d      %ld";
/* note use of string-joining */
const char *HeaderLine =
        "Player Rank Won Lost Last Game\n"
        "===============================================\n";
const char *PrtFmt = "%-12s%4d %4d %4d %s\n";
/* return the number of records in the data file */
int valid_records(FILE *fp)
{
        int i = 0;
        long plrs = 0L;
        long tmp = ftell(fp);
        char buf[LENBUF];
        fseek(fp, 0L, SEEK_SET);
        for(i = 0; fgets(buf, LENBUF, fp) != NULL ; i++)
                ;
        /* Restore the file pointer to original state */
        fseek(fp, tmp, SEEK_SET);
        return i;
}
/* read num player records from fp into the array them */
int read_records(FILE *fp, int num, player *them)
{
        int i = 0;
        long tmp = ftell(fp);
        if(num == 0)
                return 0;
        fseek(fp, 0L, SEEK_SET);
        for(i = 0 ; i < num ; i++){
                if(fscanf(fp, RdFmt, (them[i]).name,
                                &((them[i]).rank),
                                &((them[i]).wins),
                                &((them[i]).losses),
                                &((them[i]).last_game)) != 5)
                        break;          /* error on fscanf! */
        }
        fseek(fp, tmp, SEEK_SET);
        return i;
}
/* write num player records to the file fp from the array them */
int write_records(FILE *fp, player *them, int num)
{
        int i = 0;
        fseek(fp, 0L, SEEK_SET);



        for(i = 0 ; i < num ; i++){
                if(fprintf(fp, WrFmt, (them[i]).name,
                                (them[i]).rank,
                                (them[i]).wins,
                                (them[i]).losses,
                                (them[i]).last_game) < 0)
                        break;          /* error on fprintf! */
        }
        return i;
}
/*
* return a pointer to the player in array them
* whose name matches name
*/
player *find_by_name(char * name, player *them, int num)
{
        player *pp = them;
        int i = 0;
        for(i = 0; i < num; i++, pp++)
                if(strcmp(name, pp->name) == 0)
                        return pp;
        return NULLPLAYER;
}
/*
* return a pointer to the player in array them
* whose rank matches rank
*/
player *find_by_rank(int rank, player *them, int num)
{
        player *pp = them;
        int i = 0;
        for(i = 0; i < num; i++, pp++)
                if(rank == pp->rank)
                        return pp;
        return NULLPLAYER;
}
/*
* reduce by one the ranking of all players in array them
* whose ranks are now between start and end
*/
void push_down(player *them, int number, int start, int end)
{
        int i;
        player *pp;
        for(i = end; i >= start; i--){
        if((pp = find_by_rank(i, them, number)) == NULLPLAYER){
                fprintf(stderr,
                        "error: could not find player ranked %d\n", 
i);
                free(them);
                exit(EXIT_FAILURE);
        } else



                (pp->rank)++;
        }
}
/* pretty print num player records from the array them */
int print_records(player *them, int num)
{
        int i = 0;
        printf(HeaderLine);
        for(i = 0 ; i < num ; i++){
                if(printf(PrtFmt,
                        (them[i]).name, (them[i]).rank,
                        (them[i]).wins, (them[i]).losses,
                        asctime(localtime(&(them[i]).last_game))) < 0)
                        break;          /* error on printf! */
        }
        return i;
}
/* copy the values from player from to player to */
void copy_player(player *to, player *from)
{
        if((to == NULLPLAYER) || (from == NULLPLAYER))
                return;
        *to = *from;
        return;
}
/* compare the names of player first and player second */
int compare_name(player *first, player *second)
{
        return strcmp(first->name, second->name);
}
/* compare the ranks of player first and player second */
int compare_rank(player *first, player *second)
{
        return (first->rank - second->rank);
}
/* sort num player records in the array them */
void sort_players(player *them, int num)
{
        qsort(them, num, sizeof(player), compare_rank);
}
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This code,  when tested,  was compiled into an object file which was then linked
(together with an object file containing the code for the options function) with one
of the following three programs to for the ladder maintenance utilities.

Here is the code for the simplest of those utilities,  showlddr which is contained in
the file showlddr.c.



This  program  takes  a  single  option,  -f,  which  you  will  notice  takes  an  option
argument. The purpose of this argument is to allow you to print a ladder data file
with a name other than the default file name, ladder.

The player records in the data file should be stored pre-sorted but, just to be safe,
showlddr sorts them before it prints them out.



/*
* Program to print the current ladder status.
*
*/
#include "player.h"
const char *ValidOpts = "f:";
const char *Usage = "usage: showlddr [-f ladder_file]\n";
char *OtherFile;
int main(int argc, char *argv[])
{
        int number;
        char ch;
        player *them;
        const char *fname;
        FILE *fp;
        if(argc == 3){
                while((ch = options(argc, argv, ValidOpts)) != -1){
                        switch(ch){
                                case 'f':
                                        OtherFile = OptArg;
                                        break;
                                case '?':
                                        fprintf(stderr, Usage);
                                        break;
                        }
                }
        } else if(argc > 1){
                fprintf(stderr, Usage);
                exit(EXIT_FAILURE);
        }
        fname = (OtherFile == 0)? LadderFile : OtherFile;
        fp = fopen(fname, "r+");
        if(fp == NULL){
                perror("showlddr");
                exit(EXIT_FAILURE);
        }
        number = valid_records (fp);
        them = (player *)malloc((sizeof(player) * number));
        if(them == NULL){
                fprintf(stderr,"showlddr: out of memory\n");
                exit(EXIT_FAILURE);
        }
        if(read_records(fp, number, them) != number){
                fprintf(stderr, "showlddr: error while reading"
                                        " player records\n");
                free(them);
                fclose(fp);
                exit(EXIT_FAILURE);
        }
        fclose(fp);
        sort_players(them, number);
        if(print_records(them, number) != number){



                fprintf(stderr, "showlddr: error while printing"
                                        " player records\n");
                free(them);
                exit(EXIT_FAILURE);
        }
        free(them);
        exit(EXIT_SUCCESS);
}
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Of  course  the  showlddr program  works  only  if  there  is  an  existing  data  file
containing player records in the correct format. The program newplyr creates such a
file if one does not already exist and then adds a new player record, in the correct
format to that file.

Typically,  new players  are added at the bottom of the rankings but for the odd
occasion where this really may not make sense, newplyr also allows a player to be
inserted into the middle of the rankings.

A player may only appear once on the ladder (unless a pseudonym is used!) and
there  can  only  be  one  player  at  any  one  rank.  Thus  the  program  checks  for
duplicate entries and if the new player is to be inserted into a middling rank, moves
other players already on the ladder out of the way.

As with the showlddr program, newplyr recognises a -f option as a request to add
the new player to a file named by the option argument rather than the default file,
ladder.  In  addition,  newplyr  requires  two  options,  -n and  -r,  each  with  option
arguments to specify both the new player's name and initial ranking respectively.



/*
* Program to add a new player to the ladder.
* You are expected to assign a realistic
* ranking value to the player.
*
*/
#include "player.h"
const char *ValidOpts = "n:r:f:";
char *OtherFile;
static const char *Usage = "usage: newplyr -r rank -n name [-f 
file]\n";
/* Forward declaration of function defined in this file */
void record(player *extra);
int main(int argc, char *argv[])
{
        char ch;
        player dummy, *new = &dummy;
        if(argc < 5){
                fprintf(stderr, Usage);
                exit(EXIT_FAILURE);
        }
        while((ch = options(argc, argv, ValidOpts)) != -1){
                switch(ch){
                case 'f':
                        OtherFile=OptArg;
                        break;
                case 'n':
                        strncpy(new->name, OptArg, NAMELEN);
                        new->name[NAMELEN] = 0;
                        if(strcmp(new->name, OptArg) != 0)
                                fprintf(stderr,
                                        "Warning: name truncated to 
%s\n", new->name);
                        break;
                case 'r':
                        if((new->rank = atoi(OptArg)) == 0){
                                fprintf(stderr, Usage);
                        exit(EXIT_FAILURE);
                        }
                        break;
                case '?':
                        fprintf(stderr, Usage);
                        break;
                }
        }
        if((new->rank == 0)){
                fprintf(stderr, "newplyr: bad value for rank\n");
                exit(EXIT_FAILURE);
        }
        if(strlen(new->name) == 0){
                fprintf(stderr,
                        "newplyr: needs a valid name for new 



player\n");
                exit(EXIT_FAILURE);
        }
        new->wins = new->losses = 0;
        time(& new->last_game); /* make now the time of the "last 
game" */
        record(new);
        exit(EXIT_SUCCESS);
}
void record(player *extra)
{
        int number, new_number, i;
        player *them;
        const char *fname =(OtherFile==0)?LadderFile:OtherFile;
        FILE *fp;
        fp = fopen(fname, "r+");
        if(fp == NULL){
                if((fp = fopen(fname, "w")) == NULL){
                        perror("newplyr");
                        exit(EXIT_FAILURE);
                }
        }
        number = valid_records (fp);
        new_number = number + 1;
        if((extra->rank <= 0) || (extra->rank > new_number)){
                fprintf(stderr,
                        "newplyr: rank must be between 1 and %d\n",
                        new_number);
                exit(EXIT_FAILURE);
        }
        them = (player *)malloc((sizeof(player) * new_number));
        if(them == NULL){
                fprintf(stderr,"newplyr: out of memory\n");
                exit(EXIT_FAILURE);
        }
        if(read_records(fp, number, them) != number){
                fprintf(stderr,
                        "newplyr: error while reading player 
records\n");
                free(them);
                exit(EXIT_FAILURE);
        }
        if(find_by_name(extra->name, them, number) != NULLPLAYER){
                fprintf(stderr,
                        "newplyr: %s is already on the ladder\n",
                        extra->name);
                free(them);
                exit(EXIT_FAILURE);
        }
        copy_player(&them[number], extra);
        if(extra->rank != new_number)
                push_down(them, number, extra->rank, number);



        sort_players(them, new_number);
        if((fp = freopen(fname, "w+", fp)) == NULL){
                perror("newplyr");
                free(them);
                exit(EXIT_FAILURE);
        }
        if(write_records(fp, them, new_number) != new_number){
                fprintf(stderr,
                        "newplyr: error while writing player 
records\n");
                fclose(fp);
                free(them);
                exit(EXIT_FAILURE);
        }
        fclose(fp);
        free(them);
}

Example 1.96

The only remaining utility required is one for recording the results of games played.
The result program performs this task.

As with the previous two utilities, result will accept a -f option together with a file
name to specify an alternative to the default player record file.

Unlike the newplyr utility,  result interactively prompts the user for the names of
the winning and losing players. The program insists that the names supplied should
be those of existing players.

Given a valid pair of  names,  a check is then made to see if  the loser is higher
ranked than winner and whether or not the winner is ranked close enough for the
victory to alter the rankings.

If a change in the standings is in order, the victor takes the loser's rank and the
loser (as well as any other player on an intervening rank) is demoted one rank.

Here is the code for the result utility.



/*
* Program to record a result in the ladder
*
*/
#include "player.h"
/* Forward declarations for functions defined in this file */
char *read_name(char *, char *);
void move_winner(player *, player *, player *, int);
const char *ValidOpts = "f:";
const char *Usage = "usage: result [-f file]\n";
char *OtherFile;
int main(int argc, char *argv[])
{
        player *winner, *loser, *them;
        int number;
        FILE *fp;
        const char *fname;
        char buf[LENBUF], ch;
        if(argc == 3){
                while((ch = options(argc, argv, ValidOpts)) != -1){
                        switch(ch){
                                case 'f':
                                        OtherFile = OptArg;
                                        break;
                                case '?':
                                        fprintf(stderr, Usage);
                                        break;
                        }
                }
        } else if(argc > 1){
                fprintf(stderr, Usage);
                exit(EXIT_FAILURE);
        }
        fname = (OtherFile == 0)? LadderFile : OtherFile;
        fp = fopen(fname, "r+");
        if(fp == NULL){
                perror("result");
                exit(EXIT_FAILURE);
        }
        number = valid_records (fp);
        them = (player *)malloc((sizeof(player) * number));
        if(them == NULL){
                fprintf(stderr,"result: out of memory\n");
                exit(EXIT_FAILURE);
        }
        if(read_records(fp, number, them) != number){
                fprintf(stderr,
                        "result: error while reading player 
records\n");
                fclose(fp);
                free(them);
                exit(EXIT_FAILURE);



        }
        fclose(fp);
        if((winner = find_by_name(read_name(buf, "winner"), them, 
number))
                == NULLPLAYER){
                fprintf(stderr,"result: no such player %s\n",buf);
                free(them);
                exit(EXIT_FAILURE);
        }
        if((loser = find_by_name(read_name(buf, "loser"), them, 
number))
                == NULLPLAYER){
                fprintf(stderr,"result: no such player %s\n",buf);
                free(them);
                exit(EXIT_FAILURE);
        }
        winner->wins++;
        loser->losses++;
        winner->last_game = loser->last_game = time(0);
        if(loser->rank < winner->rank)
                if((winner->rank - loser->rank) <= CHALLENGE_RANGE)
                        move_winner(winner, loser, them, number);
        if((fp = freopen(fname, "w+", fp)) == NULL){
                perror("result");
                free(them);
                exit(EXIT_FAILURE);
        }
        if(write_records(fp, them, number) != number){
                fprintf(stderr,"result: error while writing player 
records\n");
                free(them);
                exit(EXIT_FAILURE);
        }
        fclose(fp);
        free(them);
        exit(EXIT_SUCCESS);
}
void move_winner(player *ww, player *ll, player *them, int number)
{
        int loser_rank = ll->rank;
        if((ll->rank - ww->rank) > 3)
                return;
        push_down(them, number, ll->rank, (ww->rank - 1));
        ww->rank = loser_rank;
        sort_players(them, number);
        return;
}
char *read_name(char *buf, char *whom)
{
        for(;;){
                char *cp;
                printf("Enter name of %s : ",whom);



                if(fgets(buf, LENBUF, stdin) == NULL)
                        continue;
                /* delete newline */
                cp = &buf[strlen(buf)-1];
                if(*cp == '\n')
                        *cp = 0;
                /* at least one char? */
                if(cp != buf)
                        return buf;
        }
}

Example 1.97

10.6. Afterword
The programs shown in this chapter should help to to get a feel for what middle-of-
the-road  C  programs  look  like,  using  the  language  and  libraries  defined  in  the
Standard.

What do we mean by 'middle-of-the-road'? Simply this: they have been designed,
implemented, tested and documented in a way appropriate for small, self-contained
programs that have no real need to show high levels of robustness and reliability.
Many programs don't need to meet demanding criteria; to do more to them would
be over-engineering. Clearly, it is entirely dependent on the eventual purpose for
which the program is intended.

There are situations which place very high demands on the software that is in use;
programs to meet these requirements are very carefully engineered and have much
higher amounts of effort put into reviewing, testing and the control of access to the
source code than would be appropriate for simple illustrative example programs. C
is also used in these application areas. The source code of programs that meet such
high requirements tends to look distinctively different; the language is the same,
but the amount of error checking and correction is typically much higher. We have
not tried to illustrate that type of program.

Whichever environment you work in, we hope that this book has helped you in your
understanding of C. Good luck!



Answers to Exercises

Chapter 1
Exercise     1.2 

#include <stdio.h>
#include <stdlib.h>
main(){
   int this_number, divisor, not_prime;
   int last_prime;
   this_number = 3;
   last_prime = 3;
   printf("1, 3 is a prime pair\n");
   while(this_number < 10000){
      divisor = this_number / 2;
      not_prime = 0;
      while(divisor > 1){
         if(this_number % divisor == 0){
            not_prime = 1;
            divisor = 0;
         }
         else
            divisor = divisor-1;
      }
      if(not_prime == 0){
         if(this_number == last_prime+2)
            printf("%d, %d is a prime pair\n",
               last_prime, this_number);
         last_prime = this_number;
      }
      this_number = this_number + 1;
   }
   exit(EXIT_SUCCESS);
}

Exercise     1.3 

#include <stdio.h>
#include <stdlib.h>
main(){
   printf("Type in a string: ");
   printf("The value was: %d\n", getnum());
   exit(EXIT_SUCCESS);
}
getnum(){
   int c, value;;
   value = 0;
   c = getchar();
   while(c != '\n'){
      value = 10*value + c - '0';



      c = getchar();
   }
   return (value);
}

Exercise     1.4   

#include <stdio.h>
#include <stdlib.h>
/* array size */
#define NUMBER  10
main(){
   int arr[NUMBER], count, lo, hi;
   count = 0;
   while(count < NUMBER){
      printf("Type in a string: ");
      arr[count] = getnum();
      count = count+1;
   }
   lo = 0;
   while(lo < NUMBER-1){
      hi = lo+1;
      while(hi < NUMBER){
         int tmp;
         if(arr[lo] > arr[hi]){
            tmp = arr[lo];
            arr[lo] = arr[hi];
            arr[hi] = tmp;
         }
         hi = hi + 1;
      }
      lo = lo + 1;
   }
   /* now print them */
   count = 0;
   while(count < NUMBER){
      printf("%d\n", arr[count]);
      count = count+1;
   }
   exit(EXIT_SUCCESS);
}
getnum(){
   int c, value;;
   value = 0;
   c = getchar();
   while(c != '\n'){
      value = 10*value + c - '0';
      c = getchar();
   }
   return (value);
}



Exercise     1.5   

#include <stdio.h>
#include <stdlib.h>
/*
* To print an int in binary, hex, decimal,
* we build an array of characters and print it out
* in order.
* The values are found least significant digit first,
* and printed most significant digit first.
*/
#define NDIG    32      /* assume max no. of digits */
int getnum(void);
main(){
   int val, i, count;
   char chars[NDIG];
   i = getnum();
   /* print in binary */
   val = i;
   count = 0;
   do{
      chars[count] = val % 2;
      val = val / 2;
      count = count + 1;
   }while(val);
   count = count - 1; /* just incremented above */
   while(count >= 0){
      printf("%d", chars[count]);
      count = count - 1;
   }
   printf("\n");
   /* print in decimal */
   val = i;
   count = 0;
   do{
      chars[count] = val % 10;
      val = val / 10;
      count = count + 1;
   }while(val);
   count = count - 1; /* just incremented above */
   while(count >= 0){
      printf("%d", chars[count]);
      count = count - 1;
   }
   printf("\n");
   /* print in hex */
   val = i;
   count = 0;
   do{
      chars[count] = val % 16;
      val = val / 16;
      count = count + 1;



   }while(val);
   count = count - 1; /* just incremented above */
   while(count >= 0){
      if(chars[count] < 10)
         printf("%d", chars[count]);
      else{
         /* assume 'A' - 'F' consecutive */
         chars[count] = chars[count]-10+'A';
         printf("%c", chars[count]);
      }
      count = count - 1;
   }
   printf("\n");
   exit(EXIT_SUCCESS);
}
getnum(){
   int c, value;;
   value = 0;
   c = getchar();
   while(c != '\n'){
      value = 10*value + c - '0';
      c = getchar();
   }
   return (value);
}



Chapter 2
Exercise     2.1 

Trigraphs  are  used  when  the  input  device  used,  or  the  host  system's  native
character set, do not support enough distinct characters for the full C language.

Exercise     2.2 

Trigraphs would not be used in a system that has enough distinct characters  to
allocate  a  separate  one  to  each  of  the  C  language  symbols.  For  maximum
portability,  one  might  see  a  trigraph  representation  of  a  C  program  being
distributed, on the grounds that most systems which do not use ASCII will be able to
read  ASCII  coded  data  and  translate  it  into  their  native  codeset.  A  Standard  C
compiler could then compile such a program directly.

Exercise     2.3 

White  space  characters  are  not  equivalent  to  each  other  inside  strings  and
character constants. Newline is special to the preprocessor.

Exercise     2.4 

To continue a long line. Especially in systems that have an upper limit on physical
line length.

Exercise     2.5 

They become joined.

Exercise     2.6 

Because the */ which apparently terminates the inner comment actually terminates
the outer comment.

Exercise     2.7 

31 characters  for internal  variables,  six for external  variables.  The six character
names must not rely on distinction between upper and lower case, either.

Exercise     2.8 

A declaration introduces a name and a type for something. It does not necessarily
reserve any storage.

Exercise     2.9 

A definition is a declaration that also reserves storage.

Exercise     2.10 



It is always the case that the largest range of values can be held in a long double,
although it may not actually be any different from one of the smaller floating point
types.

Exercise     2.11 

The same answer holds true for the type with the greatest precision: long double. C
does not permit the language implementor to use the same number of bits for, say,
double and long double, then to allocate more bits for precision in one type and
more for range in the other.

Exercise     2.12 

There can never be problems assigning a shorter floating point type to a longer one.

Exercise     2.13 

Assigning  a  longer  floating  type  to  a  shorter  one  can  result  in  overflow  and
undefined behaviour.

Exercise     2.14 

Undefined  behaviour  is  completely  unpredictable.  Anything  may  happen.  Often,
nothing seems to happen except that erroneous arithmetic values are produced.

Exercise     2.15 

a. Signed int (by the integral promotions).
b. This cannot be predicted without knowing about the implementation. If  an

int can hold all of the values of an  unsigned char the result will  be  int,
again by the integral promotions. Otherwise, it will have to be unsigned int.

c. Unsigned int.
d. Long.
e. Unsigned long.
f. Long.
g. Float.
h. Float.

Long double.

Exercise     2.16 

a. i1 % i2
b. i1 % (int)f1

c. If either operand is negative, the sign is implementation defined, otherwise it
is positive. This means that, even if both operands are negative, you can't
predict the sign.

d. Two-unary negate, binary subtract.
e. i1 &= 0xf;
f. i1 |= 0xf;
g. i1 &= ~0xf;



h. i1 = ((i2 >> 4) & 0xf) | ((i2 & 0xf) << 4);

i. The result is unpredictable. You must never use the same variable more than
once in an expression if the expression changes its value.

Exercise     2.17 

a. (c = (( u * f) + 2.6L);
(int = ((float) + long double);
(int = (long double));
(int);

Note: the integral promotion of char to int might be to unsigned int, 
depending on the implementation.

b. (u += (((--f) / u) % 3));
(unsigned += ((float / unsigned) % int));
(unsigned += (float % int));
(unsigned += float);
(unsigned);

c. (i <<= (u * (- (++f))));
(int <<= (unsigned * (- float)));
(int <<= (unsigned * float));
(int <<= float);
(int);

The rules for the shift operators state the right-hand operand is always 
converted to int. However, this does not affect the result, whose type is 
always determined by the type of the left-hand operand. This is doubly so for 
the current example, since an assignment operator is being used.

d. (u = (((i + 3) + 4) + 3.1));

The rules state that the subexpressions involving + can be arbitrarily 
regrouped, as long as no type changes would be introduced. The types are:

(unsigned = (((int + int) + int) + double))

so the leftmost two additions can be regrouped. Working from the left:

(unsigned = ((int + int) + double));
(unsigned = (int + double));
(unsigned = double);
(unsigned);

e. (u = (((3.1 + i) + 3 ) + 4));

See the comments above on regrouping.

(unsigned = (((double + int) + int) + int));



The two rightmost additions can be regrouped.

(unsigned = ((double + int) + int));
(unsigned = (double + int));
(unsigned = double);
(unsigned);

f. (c = ((i << (- (--f))) & 0xf));
(char = ((int << (- (--float))) & int ));
(char = ((int << (- float)) & int ));
(char = ((int << float) & int));
(char = (int & int));
(char);



Chapter 3
Exercise     3.1 

They all give an int result with a value of 1 for true and 0 for false.

Exercise     3.2 

They all give an int result with a value of 1 for true and 0 for false.

Exercise     3.3 

They guarantee an order of evaluation: left to right, and stop as soon as the overall
result can be determined.

Exercise     3.4 

Break can be used to turn a  switch statement into a set of exclusive choices of
action.

Exercise     3.5 

Continue has no special meaning in a switch statement, but only to an outer do,
while or for statement.

Exercise     3.6 

Inside a  while statement, the use of continue may cause the update of the loop
control variable to be missed. It is, of course, the responsibility of the programmer
to get this right.

Exercise     3.7 

Because the scope of a label doesn't extend outside the function that it lives in, you
can't  use goto to jump from one function to another.  Using the  longjmp library
routine, described in  Chapter     9, a form of function-to-function jump is supported,
but not a completely general one.



Chapter 4
Exercise     4.1 

#include <stdio.h>
#include <stdlib.h>
main(){
  int i, abs_val(int);;
  for(i = -10; i <= 10; i++)
    printf("abs of %d is %d\n", i, abs_val(i));
  exit(EXIT_SUCCESS);
}
int
abs_val(int x){
  if(x < 0)
    return(-x);
  return(x);
}

Exercise     4.2 

There are two files that form the answer to this exercise. This is the first.

#include <stdio.h>
#include <stdlib.h>
int curr_line(void), curr_col(void);
void output(char);
main(){
  printf("line %d\n", curr_line());
  printf("column %d\n", curr_col());
  output('a');
  printf("column %d\n", curr_col());
  output('\n');
  printf("line %d\n", curr_line());
  printf("column %d\n", curr_col());
  exit(EXIT_SUCCESS);
}

The second file contains the functions and static variables.

#include <stdio.h>
int curr_line(void), curr_col(void);
void output(char);
static int lineno=1, colno=1;
int
curr_line(void){
  return(lineno);
}
int
curr_col(void){
  return(colno);
}



void
output(char a){
  putchar(a);
  colno++;
  if(a == '\n'){
    colno = 1;
    lineno++;
  }
}

Exercise     4.3 

The recursive function:

#include <stdio.h>
#include <stdlib.h>
void recur(void);
main(){
  recur();
  exit(EXIT_SUCCESS);
}
void
recur(void){
  static ntimes;
  ntimes++;
    if(ntimes < 100)
      recur();
  printf("%d\n", ntimes);
  ntimes--;
}

Exercise     4.4 

And finally, the largest of all of the answers.

#include <stdio.h>
#include <stdlib.h>
#define PI 3.141592
#define INCREMENT (PI/20)
#define DELTA .0001
double sine(double), cosine(double);
static unsigned int fact(unsigned int n);
static double pow(double x, unsigned int n);
main(){
  double arg = 0;
  for(arg = 0; arg <= PI; arg += INCREMENT){
    printf("value %f\tsine %f\tcosine %f\n", arg, sine(arg), 
cosine(arg));
  }
  exit(EXIT_SUCCESS);
}
static unsigned int
fact(unsigned int n){



  unsigned int answer;
  answer = 1;
  while(n > 1)
    answer *= n--;
  return(answer);
}
static double
pow(double x, unsigned int n){
  double answer;
  answer = 1;
  while(n){
    answer *= x;
    n--;
  }
  return(answer);
}
double
sine(double x){
  double difference, thisval, lastval;
  unsigned int term;
  int sign;
  sign = -1;
  term = 3;
  thisval = x;
  do{
    lastval = thisval;
    thisval = lastval + pow(x, term)/fact(term) * sign;
    term += 2;
    sign = -sign;
    difference = thisval - lastval;
    if(difference < 0)
      difference = -difference;
    }while(difference > DELTA && term < 16);
  return(thisval);
}
double
cosine(double x){
double difference, thisval, lastval;
  unsigned int term;
  int sign;
  sign = -1;
  term = 2;
  thisval = 1;
  do{
    lastval = thisval;
    thisval = lastval + pow(x, term)/fact(term)  * sign;
    term += 2;
    sign = -sign;
    difference = thisval - lastval;
    if(difference < 0)
      difference = -difference;
  }while(difference > DELTA && term < 16);



  return(thisval);
}



Chapter 5
Exercise     5.1 

0-9.

Exercise     5.2 

Nothing. It is guaranteed to be a valid address and can be used to check a pointer 
against the end of the array.

Exercise     5.3 

Only when they point into the same array, or to the same object.

Exercise     5.4 

It can safely be used to hold the value of a pointer to any sort of object.

Exercise     5.5 

int
st_eq(const char *s1, const char * s2){
  while(*s1 && *s2 && (*s1 == *s2)){
    s1++; s2++;
  }
  return(*s1-*s2);
}
const char *
find_c(char c, const char *cp){
  while(*cp && *cp != c)
     cp++;
  if(*cp)
    return(cp);
  return(0);
}
const char *
sub_st(const char *target, const char *sample){
  /*
   * Try for a substring starting with
   * each character in sample.
  */
  while(*sample){
    const char *targ_p, *sample_p;
    targ_p = target;
    sample_p = sample;
    /* string compare */
    while(*targ_p && *sample_p && (*targ_p == *sample_p)){
        targ_p++; sample_p++;
    }
    /*
    * If at end of target, have substring!
    */



    if(*targ_p == 0)
      return(sample);
    /* otherwise try next place */
      sample++;
    }
  return(0);      /* no match */
}

Exercise     5.6 

No answer can be given.



Chapter 6
Exercise     6.1 

struct {
  int a,b;
};

Exercise     6.2 

Without a tag or any variables defined, the structure declaration is of little use. It 
cannot be referred to later.

Exercise     6.3 

struct int_struc{
  int a,b;
}x,y;

Exercise     6.4 

struct int_struc z;

Exercise     6.5 

p = &z;
p->a = 0;

Exercise     6.6 

Explicitly, for example

struct x;

or implicitly,

struct x *p;

when no outer declaration exists.

Exercise     6.7 

It is not treated as a pointer, but as a short-hand way of initializing the individual 
array elements.

Exercise     6.8 

Nothing unusual at all, the string is treated as a literal constant of type 
const char *.

Exercise     6.9 

Yes. It is easier!



Chapter 7
Exercise     7.1 

#define MAXLEN 100

Exercise     7.2 

In expressions, there may be precedence problems. A safer definition would be 
#define VALUE (100+MAXLEN).

Exercise     7.3 

#define REM(a,b) ((a)%(b))

Exercise     7.4 

#define REM(a,b) ((long)(a)%(long)(b))

Exercise     7.5 

It generally signifies a library header file.

Exercise     7.6 

It generally signifies a private header file.

Exercise     7.7 

By using the conditional compilation directives. Examples are shown in the text.

Exercise     7.8 

It uses long int in place of int and unsigned long int, in place of unsigned int using 
the arithmetic environment provided by the translator, not the target. It must 
provide at least the ranges described in <limits.h>.
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